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Abstract – In this paper, we describe a novel self-organizing neural network model, the self-
organization by balanced excitatory and inhibitory input model (SOBEII).  Using balanced 
excitation and inhibition and anti-Hebbian learning strategy, SOBEII is capable of automatically 
determining the proper cluster structure of given datasets in a robust manner. This is demonstrated 
using both synthetic and real datasets. SOBEII results match those of EM, however, SOBEII is not 
sensitive to adverse initialization conditions or outliers in contrast to many conventional clustering 
methods. 
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1   Introduction 
 
Cluster analysis is a fundamental and generic tool used to find natural groupings inherent in 
multivariate datasets, which has found a wide range of applications in diverse fields. Clustering can 
be viewed as a mode-seeking procedure, i.e., to find a suitable number of data dense regions 
(clusters) into which to partition the data. Most conventional clustering methods, such as the k-
means, FCM, and EM algorithms [1, 3, 4], assume that the suitable number of clusters (k) for the 
given dataset is known (rarely true), and only partition the data into k regions. There are other well-
known issues associated with these conventional methods, namely, sensitivity to initialization, 
noise and outliers.   
In practice, for most conventional clustering algorithms, the mode seeking for the suitable number 
of clusters (k) is determined in a two-step process. First, we need to build a series of candidate 
models for each potential k within a large range of k, and then select the best model based on some 
model selection criteria. Some of the commonly used criteria include Akaik's information criterion 
(AIC), Baysian inference criterion (BIC), and the consistent Akaik's information criterion (CAIC) 
[7]. Due to the sensitivity issues of the conventional methods, we often need to perform multiple 
runs of clustering at each given k to obtain a stable clustering result, which makes the total mode-
seeking procedure computationally expensive or even potentially prohibitive.  
Kohonen's self-organizing feature map (SOM), inspired by the organizational principles of 
biological neural systems, has become a standard tool for cluster analysis, data mining and 
visualization over a wide range of applications [2, 8, 9]. The incremental variants of SOM, e.g., 
GNG and RGNG algorithms [5, 10], have shed new light on configuring the appropriate number of 
clusters in an automatic fashion. However, the final number of nodes (clusters) is somewhat  
influenced by the network parameters. Although differing in the details, all SOM-like algorithms 
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share common principles, i.e., a winner-take-all network dynamic and a Hebbian learning strategy 
with collaboration within a near neighborhood (usually modeled by a Gaussian).  
The Rival Penalized Competitive Learning (RPCL) algorithm, an extension of SOM, is capable of 
automatically finding the suitable number of clusters [13]. Contrary to the second principle of 
SOM, RPCL introduces local competition and utilizes anti-Hebbian learning during neighborhood 
adaptation. RPCL has been incorporated into the Baysian Ying-Yang Harmony Learning 
framework (BYY), with many improvements on robustness [7, 14, 15].  
Recently, a novel self-organizing model, Self-organization by Lateral inhibition (SOLI) has been 
proposed as a further extension of SOM and RPCL.  However, SOLI is distinctively different [11, 
12]. The first fundamental difference from SOM lies in that SOLI is a winner-less competitive 
network. Each node in SOLI is associated with an activation function (functionally similar to the 
neighborhood function in SOM), which is defined by a balanced Mexican Hat (MH) function and 
implemented as the difference of two Gaussians. For a balanced MH function, there are areas 
naturally under positive/negative influences due to different degrees of excitation/inhibition. In 
reality, for a given input data point x, some nodes get positively activated (excited) while others 
negatively activated (inhibited).  Thus, there is no need to decide winners or loser(s) explicitly. The 
second major difference from SOM and RPCL is that SOLI uses anti-Hebbian learning to update 
the receptive fields for all nodes. It has been demonstrated empirically that SOLI is capable of 
robustly mimicking the data dense areas using identical Gaussian clusters; when combined with 
model selection modules (clustering validity indices), SOLI is capable of discovering suitable 
cluster structures [11, 12]. However, such a discovery is not fully automatic. The limitation comes 
from the fact that the shapes and sizes of the Mexican Hat function for all nodes remain identical 
and unchanged during the learning process of SOLI.  
In this paper, we extended the SOLI model to a new model, properly named as, the Self-
Organization by Balanced Excitatory and Inhibitory Input model (SOBEII). During learning, 
SOBEII is allowed to learn not only the receptive fields, but also the exact shapes and sizes of the 
MH functions of all nodes. The learning of MH functions allow the nodes to model exact sizes of 
Gaussian clusters, not as defined parameters as in SOLI. In the course of learning, different nodes 
in SOBEII may be drawn into the same data dense area and become almost identical in terms of 
defining parameters, which will be merged together. Randomly starting from a large number of 
nodes, the learning process of SOBEII is driven solely by the density distribution of the given 
dataset. Eventually, all SOBEII nodes converge to a few local density centers (true number of 
clusters). Currently, SOBEII is designed to automatically determine the proper number of clusters 
in a robust manner, if data are generated by a mixture of spherical Gaussian components. 
Compared to most conventional methods, SOBEII is not sensitive to initialization or outliers.   
This paper is organized as follows. In Section 2, we describe the implementation details of SOBEII. 
In Section 3, we demonstrate how SOBEII performs the automatic model selection task in a robust 
manner and how it compares with the conventional two-phase model selection approach using EM. 
We conclude and point out the future research in Section 4. 
 
 
2   Introduction to SOBEII 
 
Recent biological findings show that balancing inhibitory and excitatory inputs plays a fundamental 
role in shaping the selectiveness of the neurons and formation of topologically ordered organization 
of biological neural systems [16, 17]. Both SOLI and SOBEII are inspired by such principles. The 
core computational component for both SOLI and SOBEII is the balanced MH function, which is 
the incarnation of balanced excitatory and inhibitory inputs principle. 
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In terms of structure, SOBEII is composed of a set of neurons, with no lateral connections among 
them. Each neuron is defined by its receptive field ui and a distinct activation function, MHi, in the 
form of a Mexican Hat. For given input x, MHi is defined as   
MHi(x, ui)=exp(-dist(x, ui)2/2σi

2)-exp(-dist(x, ui)2/2(λiσi)2))/ λi,  
where λi∈ (1, ∞], σi corresponds to a spherical covariance matrix associated with a Gaussian 
cluster,  while dist(⋅) denotes a distance function (Euclidean distance is used in this research). It can 
be easily proven that the integration of MHi over the range [-∞, ∞] on distance, dist(⋅), is 0. This 
property serves as an internal balancing mechanism between excitation and inhibition from inputs.  
During learning, we update ui, λi and σi for each node i after each input x using the following rules. 

Δui=-ημ × MHi(x, ui)×( x- ui);        (1) 
Δσi=-ησ × MHi(x, ui);         (2) 
Δλi=ηλ × MHi(x, ui);         (3) 

We define three global learning rates, ημ,ηλ and ησ respectively.  In general, ημ  is much bigger 
than ησ. In practice, we recommend the following values (also used in this work), ημ=0.1, ησ=0.01 
and ηλ is set to be ησ

1.5 .  
 
A pseudocode of the training procedure is defined below: 
1. Initialize the network with m data points selected from the data set, m >> kideal, 
2. Rough training of network parameters, mainly to stabilize ui and converge to k -nodes  
    while maxEpoch is not reached,  
 within each epoch, for each input x, update network using rules (1, 2, 3) in sequence; 
 merge nodes i and j if dist(ui, uj) < 0.1σ, where σ=min(σi, σj); 
 ημ reduced as ημ*exp(-1/maxEpoch); 
 IF no merging nodes occuring in the current epoch,  
  ( )( )uu epcohprevious

i

epochcurrent

i
i

distU __ ,maxarg=Δ ; 

  IF ( <0.01) THEN (break); UΔ
  END 
    end 
3. Fine tuning of the network parameters 
    Partition data into corresponding clusters; 
    For each subset of data, Xi, that belongs to cluster i,  
    while 1, // parameters not converged,  

run one epoch training of the network parameters using Xi,  
 IF (abs(σcurrent_epoch-σprevious_epoch)/ σprevious_epoch <0.01& λcurren_epoch<1.001 ) THEN (break); 
      end 
 4. Repeat step 2 and 3 once more to make sure of convergence and absorb outlier nodes. 
 
3   Experimental Results  
 
In this section, we demonstrate the relative robustness of SOBEII for the automatic determination 
of the proper number of clusters. We apply SOBEII to one difficult 2D synthetic dataset and two 
UCI real datasets. For the synthetic dataset, we compare SOBEII results against the known 
solution; in addition, values of different model selection criteria are computed. The overall results 
of SOBEII are further compared to that of EM algorithm. For the real datasets, besides the model 
selection task, we also investigate how we can utilize SOBEII to analyze the cluster organization 
for the data from each class. For all experiments, SOBEII converges within 250 epochs.   
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3.1   Synthetic data  
 
We have experimented with SOBEII on many synthetic datasets of different degree of difficulties. 
Due to the space limit, here, we only report the results for one very difficult dataset, Data 1. Data 1 
is composed of 19 spherical Gaussian clusters, arranged in a concentric three-ring shape with 
19,600 points. It is designed with three grades of sizes of clusters (0.5, 1, and 2) and three grades of 
density levels (ρ), i.e., ρinner-ring : ρmiddle-ring : ρouter-ring = 1 : 64 : 4. The drastic density difference and 
geometric arrangements of clusters are designed to challenge the clustering algorithm.  
For the synthetic dataset, we ran SOBEII 100 times, each starting with a different random 
initialization. We observe that SOBEII converges consistently to only a few possible cluster 
structures. We select the structure that SOBEII most frequently converges to, as the proper cluster 
structure recognized by SOBEII. For each structure converged to, we compute the model selection 
criteria values (AIC, BIC, CAIC) averaged over all the runs. We also ran EM 100 times for the 
given range of possible clusters (usually from 1 to 2kideal). To determine the proper k value for EM, 
the three model selection criteria values are computed and averaged at each k. 
 

Table 1. Synthetic data summary 

x1 x2 σ nk x1 x2 σ
0.000 0.000 2.00 400 0.096 0.081 1.27
3.750 6.495 0.50 1600 3.745 6.480 0.51
6.852 3.051 0.50 1600 6.886 3.056 0.52
7.336 -1.559 0.50 1600 7.369 -1.572 0.49
5.018 -5.574 0.50 1600 5.033 -5.557 0.50
0.784 -7.459 0.50 1600 0.764 -7.457 0.49
-3.750 -6.495 0.50 1600 -3.756 -6.538 0.47
-6.852 -3.051 0.50 1600 -6.868 -3.045 0.51
-7.336 1.559 0.50 1600 -7.338 1.558 0.49
-5.018 5.574 0.50 1600 -4.985 5.591 0.51
-0.784 7.459 0.50 1600 -0.800 7.459 0.49
4.592 11.087 1.00 400 4.598 10.956 0.96

11.087 4.592 1.00 400 11.053 4.664 1.02
11.087 -4.592 1.00 400 11.099 -4.666 0.94
4.592 -11.087 1.00 400 4.600 -11.089 0.82
-4.592 -11.087 1.00 400 -4.537 -11.157 0.90

-11.087 -4.592 1.00 400 -11.005 -4.659 0.96
-11.087 4.592 1.00 400 -11.148 4.547 0.98
-4.592 11.087 1.00 400 -4.611 11.169 0.96

Gaussian component parameters SOBEI results

Note: (x1, x2) denotes the centroid positions, σ  represents the size of the cluster, nk denotes the 
cardinality of the cluster. 
 
Data 1 Results  
 
The overall results are compiled in Fig 2. In Fig 2.a, SOBEII converges consistently to a 19-cluster 
structure with 87% convergence frequency.  In Fig 1, we show a typical running result of 19 
clusters with its numerical results reported in Table 1. We can see that the SOBEII results are very 
close to the theoretical Gaussian model parameters as shown in Table 1. In Fig 1, notice that among 
all the initial positions of neurons, many are located far from the data dense areas with some falling 
into "outlier" area or areas between data clusters. Even with such an initialization condition, 
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SOBEII is capable of converging to data dense area with the proper number of clusters. We 
observed similar behavior of SOBEII on many other synthetic datasets, which leads us to believe 
that SOBEII is not very sensitive to initialization conditions, outlier or noise in contrast to many 
conventional methods.  
The three model selection criteria all agree that the 19-cluster structure obtained by SOBEII is the 
proper cluster structure for Data 1 as in Fig 2.b. Based on the EM results, none of the model 
selection criteria is able to recognize the ideal cluster structure in Fig 2.c. They all recognize the 
proper cluster structure to be about 21 to 23 clusters.  
Checking the detailed convergent stages of EM, for the cases of k > 19, EM often converges to 
some trivial clusters or tries to split one real cluster into multiple sub-clusters. There are two 
contributing factors, first being EM's sensitivity to initialization and outliers, and the second is due 
to the partitional nature of EM. Therefore, for EM, simply removing bogus cluster centers will not 
solve all the problems that are rooted in the partitional nature of EM. 

 
Fig 1. Data 1 running result of run 67. The light dots represent data points, the dark dots represent 
the initial nodes positions, and '◊' denotes the converged node positions. 

 
Fig 2. Results summary for Data 1. a). Histogram of converged number of clusters. x-axis: number 
of clusters, y-axis, frequency of convergence. b). Model selection for SOBEII results. x-axis: 
number of clusters, y-axis, values of model selection criteria. c). Model selection for EM results. x-
axis: number of clusters, y-axis, values of model selection criteria. 
 
3.2   UCI datasets  
 
The two real datasets, Iris and Wine datasets are from the UCI datasets collection [18]. To 
understand the correlation between the obtained clustering structure and the known class 
distribution, the measure of classification accuracy is calculated as follows. For each run, we 
randomly split the data into training and testing sets with ratio of 9:1, we ran the clustering 
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algorithms on the training set, from which we assigned class labels to each cluster based on a 
majority vote of its members. The classification accuracy is computed only for the test data as the 
percentage of points whose class labels match the class label of its owner cluster (to reduce the bias 
from training set).   

 
Iris data 
The Iris data is a well-known dataset for cluster analysis. It has 3 classes (of 50 points per class), 
distributed in a 4-dimensional space. It is known that the one class can be linearly separated from 
the other two classes, and the latter two classes are not linearly separable. Traditionally, a 2-cluster 
structure has been identified as the most stable cluster structure [6].  
The SOBEII results are reported in Fig 3 based on 150 runs. The most frequent convergent stage 
for SOBEII corresponds to a 2-cluster structure at (70% of the 150 runs). The model selection 
results in Fig 3.b support a 2-cluster proper cluster structure for SOBEII. Interestingly, the 
classification accuracies in Fig 3.c for 2 and 3 clusters remain almost the same. SOBEII results 
suggest that a 2-cluster structure is a good choice for proper cluster structure.  

 
Fig 3. SOBEII result summary for Iris data. a). Histogram of converged number of clusters. x-axis: 
number of clusters, y-axis, frequency of convergence. b). Model selection for SOBEII results. x-
axis: number of clusters, y-axis, values of model selection criteria. c). Classification accuracy.  x-
axis: number of clusters, y-axis, values of model selection criteria.  

 
Fig 4. EM result summary for Iris data. a). Model selection for EM results. x-axis: number of 
clusters, y-axis, values of model selection criteria. b). Classification accuracy.  x-axis: number of 
clusters, y-axis, values of model selection criteria. 
 
The EM result is shown in Fig 4. Both AIC and BIC curves in Fig 4.a suggest 3 to be the proper 
number of clusters, while CAIC curve prefers 2 to be the proper value. However, the difference 
between a 2-cluster structure and a 3-cluster structure is not that obvious even for AIC and BIC. 
The classification results in Fig 4.b for the 3-cluster structure are significantly better than for the 2-
cluster structure. Overall, the EM results prefer a 3-cluster structure.  
The difference between EM results and SOBEII results can be explained by the inferior assumption 
of spherical covariance matrices used in SOBEII comparing to the arbitrary covariance matrices 
used in EM. This is confirmed by checking the detailed EM results for the 3-cluster solutions. 
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Wine data 
The Wine dataset has 3 classes, distributed in a 13-dimensional space. In [10], GNG with model 
selection and Robust GNG (RGNG) obtained the proper cluster number to be between 3 and 4.  
We ran SOBEII 250 times, and results are summarized in Fig 4. Fig 4.a suggests two proper cluster 
structures with almost equal likelihood (3 or 4). In Fig 4.b, the BIC and CAIC curves seem unable 
to determine the proper number of clusters, while the AIC curve suggests 3 or 4 to be the proper 
number of clusters. In Fig 4.c, a 4-cluster structure apparently provides a 5% absolute accuracy 
increase comparing to that of 3-cluster structure, on average.  
The EM results are summarized in Fig 5. As with SOBEII, it is impossible to use model selection 
criteria to determine the proper number of clusters using EM results as shown in Fig 5.a. The 
classification accuracy results in Fig 5.b suggest a peak performance at 4 clusters.  
Through the experiments, we notice that the EM performances are very unstable compared to 
SOBEII, which may be attributed to the sensitivity issues of EM. The unstableness of EM is 
reflected in the larger classification difference between training and testing sets and the drop of 
classification accuracy after 4-cluster as compared to that of SOBEII. We also noticed that the 
absolute values of classification accuracy of SOBEII are much better than that of EM.  

 
Fig 5. SOBEII result summary for Wine. (The full legends are the same as Fig 3, omitted here) 

 
Fig 6. EM result summary for Wine data (The full legends are the same as Fig 4, omitted here) 
 
4.  Conclusion and future work 
 
This work presents the SOBEII model, a self-organizing neural network model that is capable of 
automatically determining the cluster structure of a given dataset. Different from many SOM 
related models, it uses a balanced Mexican Hat function to model the activation of each node, while 
using anti-Hebbian learning to learn its receptive fields and the model parameters related to MH 
functions. Through experiments on both synthetic and real datasets, we have demonstrated that 
SOBEII can converge to the proper cluster structures with high probability in a robust manner. It is 
also observed that SOBEII is not sensitive to the initialization conditions and outliers in contrast to 
many conventional clustering methods. Compared to EM, the results of SOBEII can match those of 
EM for most cases. However, the performance of SOBEII is more stable than that of EM. In terms 
of computation, for all the datasets, SOBEII converged within 250 epochs, which is rather efficient.  
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Currently, the formulation of SOBEII only allows modeling of spherical covariances of Gaussian 
clusters.  This satisfies most of the applications in data mining with medium to high 
dimensionality, as with Wine dataset (due to the central limit theorem). However, it is this 
limitation that allows EM to out perform SOBEII for the Iris data, which requires modeling with 
arbitrary covariance matrices. In the future, we will extend SOBEII to allow modeling arbitrary 
covariance matrices. So far, theoretical analysis of this method has been lacking. In the future, we 
will investigate how SOBEII can be related to other theoretical frameworks for cluster analysis and 
its convergence property.  
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