
A Fast Algorithm for the Self-Organizing Map on

Dissimilarity Data

Brieuc Conan-Guez†, Fabrice Rossi‡, Aı̈cha El Golli‡
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Abstract - In this paper, we propose a new implementation of an adaptation of Kohonen’s
Self-Organizing Map (SOM) to dissimilarity data. We propose first a modified algorithm that
allows an important reduction of the theoretical cost. Moreover, we introduce implementation
techniques that allow to obtain very short running time. We illustrate the obtained method
on simulated and real world data.
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1 Introduction

In many real world applications, data cannot be accurately represented by vectors. Rele-
vant examples include data having variable size, such as protein sequences, data which are
strongly non numerical, such as text, or data having a complex internal structure, such as
semi-structured data (XML) or structured data (graph or tree). One possible solution for
processing this type of data is to rely on dissimilarity measures that allow sensible comparison
between observations.

A variation of Kohonen’s Self-Organizing Map (SOM, [1]) adapted to dissimilarity data has
been proposed in [2, 3] and has been applied successfully to a protein sequence clustering and
visualization problem, as well as to string clustering problems. A drawback of this adaptation
of the SOM, based on the batch version of the classical SOM, is that its running time can be
very high, especially when compared to the standard vector SOM. In this paper, we propose
a modification of the algorithm that allows an important reduction of its theoretical cost,
and yet gives identical results. Moreover, we present some additional implementation tricks
that allow to reduce the actual computation time even more, again with no modification of
the results.

The paper is organized as follows. In section 2 we recall the SOM algorithm adapted to
dissimilarity data (DSOM). In section 3, we present the modified algorithm and the im-
plementation methods. Finally, in section 4 we illustrate the running time improvements
obtained on simulated and real world data.
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2 Self-Organizing Maps for dissimilarity data

2.1 The standard algorithm

We recall in this section the adaptation of the Self-Organizing Map (SOM) to dissimilarity
data proposed in [2, 3]. More precisely, we describe the version proposed in [4]. Let us
consider N input data D = (xi)1≤i≤N from an arbitrary input space X , and let d be a
dissimilarity measure on X (d is symmetric, positive and d(x,x) = 0 for all x in D).
We consider a SOM with M models (or neurons) which are numbered from 1 to M . Model
j is associated to an element of D, denoted mj (therefore for each model j, there is i that
depends on j, such that mj = xi). mj is called the prototype of model j, and we denote
M = (m1, . . . ,mM ). The goal of the SOM algorithm is to produce values for M such that
the set D is correctly quantified by the models and such that models are organized according
to a prior structure. This structure is represented by an undirect graph G = (V, E) whose
vertexes are model numbers (i.e. V = {1, . . . , M}). A pair of models, (j, k), are connected
on the graph, if (j, k) belongs to E . We define g(j, k) as the length of the shortest path in
G from j to k. Two prototypes, whose associated models are close according to distance g,
must be close according to the dissimilarity d. Finally, given a decreasing kernel function
K such that K(0) = 1 and limx→∞ K(x) = 0 (for instance, K(x) = exp(−x2)), we define
the neighborhood function h(j, k) = K(g(j, k)). h(j, .) measures the influence of model j on
other models.
The Dissimilarity SOM algorithm (DSOM) is a batch iterative algorithm and therefore the
prototypes associated to models as well as the neighborhood function are evolving with the
iterations. We use superscript to denote iterations: ml

j is the prototype associated to model j

at iteration l, just as hl(., .) is the neighborhood function associated to iteration l. To ensure
SOM convergence, influences between models, that is hl(., .), must decrease as l increases.
The DSOM algorithm is based on the batch version of the SOM. It starts by an initialization
phase, in which initial values for the protototypes M0 = {m0

1, . . . ,m
0
M} are chosen (for

instance, one can use the simple random initialization). Then, the algorithm alternates
affectation phases and representation phases until convergence. For iteration l, we have:

1. the affectation phase assigns each observation xi to its winning model cl(i) according
to the standard affectation rule: cl(i) = arg minj∈{1,...,M} d(xi,m

l−1
j ). We denote Cl

j ,

the cluster associated to model j at iteration l, that is Cl
j = {1 ≤ i ≤ N |cl(i) = j}.

2. in the representation phase, the algorithm computes new values for prototypes (i.e.
Ml). Each prototype ml

j is solution of the problem:

ml
j = arg min

m∈D

N
∑

i=1

hl(cl(i), j)d(xi,m). (1)

Several variations of this simple algorithm can be found in [2, 3, 4], but they all share a
similar representation phase.

2.2 Cost for a straightforward implementation

The major drawback of the DSOM algorithm is the cost induced by the representation phase
(the cost of the affectation phase is linear with respect to the number of observations as in
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the standard SOM algorithm). Indeed, a simple way to implement the representation phase
for a single prototype is to rely on a brute force approach, i.e. to test all possible candidates.
Then, equation 1 necessitates the evaluation of N sums (outer loop), which corresponds to
the arg min operation. Moreover, each sum costs O(N) (inner loop). Therefore the whole
representation phase cost is O(N2M), as there are M prototypes.
It is interesting to compare this cost to the one of the standard SOM in its batch ver-
sion: in this case, observations xi and prototypes belong to the vector space R

n (pro-
totypes are not constrained to be observations). The representation problem ml

j =

arg minm∈Rn

∑N
i=1 hl(cl(i), j)‖xi − m‖2 is easily solved by: ml

j =
P

N

i=1
hl(cl(i),j)xi

P

N

i=1
hl(cl(i),j)

. In this

case, the cost of the representation phase for the SOM algorithm is O(nNM) (calculation
with vectors xi implies n operations, there are N such operations for the sum, and finally we
must compute the sum for each prototype). We can see here that the representation phase
for the SOM is linear with respect to the number of observations, whereas it is quadratic in
the case of the DSOM.

3 A fast implementation

As shown in the previous section, the cost of the DSOM for one iteration is O(N2M). In
case of big data sets, the computation cost can be too high: for instance in [3], the data set
size is N = 77977 and the model number is M = 600. In this case, N2M is approximately
equal to 3.65 1012 and the authors relied on a samply strategy to avoid this cost. The goal
of this section is to present an alternate algorithm for the DSOM that allows an importante
reduction of its theoretical cost. Moreover, we introduce implementation methods that allow
to obtain very short running time without modifying DSOM output.

3.1 Partial sums

The structure of the optimization problem of equation 1 allows a major simplification to be
done. At iteration l and for each model j, the goal is to find for which k, Sl(j, k) is minimal,
where Sl(j, k) =

∑N
i=1 hl(cl(i), j)d(xi,xk). If we denote Dl(u, k) =

∑

i∈Cl
u
d(xi,xk), we can

express Sl(j, k) in a simpler form:

Sl(j, k) =

M
∑

u=1

hl(u, j)
∑

i∈Cl
u

d(xi,xk) =

M
∑

u=1

hl(u, j)Dl(u, k). (2)

They are MN different values Dl(u, k), which can be pre-calculated once and for all before
the representation phase. The cost of this precalculation phase is O(N2). Indeed, calculating
the partial sum Dl(u, k) costs O(|Cl

u|) (|Cl
u| is the cluster size). Then calculating all the

Dl(u, k) for a fixed u costs O(N |Cl
u|). As

∑M
u=1 |C

l
u| = N , the total calculation cost is O(N2).

According to the second right hand side of equation 2, calculation of Sl(j, k) can be done in
O(M) operations. As this must be done for all k and all j, the cost is O(NM2). Finally, the
total cost of representation phase based on partial sum precalculation costs O(N2 + NM2),
whereas it was O(N2M) for the brute force algorithm. As M < N in almost all situations,
this approach reduces the cost of the DSOM (as it can be seen in experiments of section 4).
Moreover, the results are stricly identical to those obtained by the brute force approach.
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3.2 Early stopping

One way to improve the efficiency of the algorithm based on partial sum precalculation is
to use an early stopping strategy for the calculation of Sl(j, k): the idea is to avoid full
calculation of Sl(j, k) by stopping the accumulation process (inner loop) as soon as the
calculated value δk is higher than a previously calculated one δ. This optimization does not
reduce the worst case complexity of the algorithm, but as we will see in section 4, it can in
practice reduce the effective running time. See algorithm 1 for implementation details.

Algorithm 1 Inserting early stopping in the representation phase

1: for j = 1 to M do {Representation phase}
2: δ ←∞
3: for k = 1 to N do {outer loop}
4: δk ← 0
5: for u = 1 to M do {inner loop}
6: δk ← δk + hl(u, j)Dl(u, k)
7: if δk > δ then {early stopping}
8: break inner loop
9: end if

10: end for
11: if δk < δ then
12: δ ← δk

13: ml
j ← xk

14: end if
15: end for
16: end for

3.3 Inner and outer loop evaluation order

In order to favor early stopping, both the inner loop and the outer loop should be ordered. For
the inner loop, the optimal strategy would be to sort (hl(u, j)Dl(u, k))1≤u≤M in decreasing
order. This allows to sum first high values of hl(u, j)Dl(u, k) so as to increase δk as fast
as possible. In this case, the early stopping condition (line 7 of algorithm 1) would be
fullfill in a minimum of iterations. Of course, such order cannot be used in practice, as
it implies a cost which is much higher than the one of the inner loop (sorting M values
costs O(M log(M)), which has to be done for all pairs of j and k). We have therefore to
rely on an approximate order for the inner loop. A simple yet efficient order is given by
ranking (hl(u, j)Dl(u, k))1≤u≤M according to the decreasing order of corresponding values
(hl(u, j))1≤u≤M . Indeed, the neighborhood function is defined thanks to a kernel function K.
In general, this kernel function decreases exponentially to 0 on R

+. Therefore, when models
u and j are far away in the graph, hl(u, j) is very small, especially when l is close to L. Order
on (hl(u, j))1≤u≤M allows therefore to sum first high values of (hl(u, j)Dl(u, k))1≤u≤M , and
then low values. It is worth noticing that ranking (hl(u, j))1≤u≤M in decreasing order, is
equivalent to ranking g(u, j) in increasing order (which is independant of l). Indeed, hl is
requested to be a decreasing function. Therefore, ranking (hl(u, j))1≤u≤M is independant of
iteration l, and can be precalculated once and for all before the first iteration of the algorithm.
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A nice outcome of this remark is that ordering according to the map structure induces a very
small overhead compare to algorithm 1. We will see in section 4 that experiments benefit
greatly from this reordering of the inner loop.
For the outer loop, the best order would be to start with low values of Sl(j, k) (i.e., with
good candidates for the prototype of model j): a small value of δ will stop inner loops
earlier than a high value. As our goal is to avoid full calculation of all quantities Sl(j, k), it
is obviously impossible to calculate this optimal order. One possible solution is to rely on
the fact that the DSOM algorithm tends to stabilize during the iterations. Therefore, the
prototype obtained during the previous iteration, ml−1

j , should be a good candidate for ml
j .

We define q as the index such that xq = ml−1
j . Therefore a good evaluation order for all the

(Sl(j, k))1≤k≤N is Sl(j, q) followed by all (Sl(j, k))k=1,...,q−1,q+1,...,N in natural order. This
ordering method induces no overhead. Another possible solution for ordering the outer loop
is to take into account the self-organization process. Indeed, good candidates for ml

j should

be in the cluster Cl
j or in clusters close to cluster Cl

j for the dissimilarity measure d. As model
proximity on the graph reflects cluster proximity in the input space X , especially during the
last iterations, we can order calculation of Sl(j, k) according to the graph structure. First, we
consider observations belonging to cluster Cl

j as potential candidat for ml
j . Then we evaluate

observations belonging to clusters Cl
k, in such a way that model k associated to cluster Cl

k

is further and further away from model j for the graph distance. Once again, this ordering
does not introduce any additional cost for the representation phase.

3.4 Reusing earlier values

Another source of optimizations comes from the iterative nature of the DSOM algorithm.
Obviously Sl(j, k) depends on l quite strongly thanks to the neighborhood function hl and it
would be therefore quite difficult to reuse previous values. On the contrary, Dl(u, k) depends
on time only through the content of cluster Cl

u. When the DSOM algorithm proceeds, clusters
tend to stabilize and it is quite common for most of the clusters to remain identical from
one iteration to the next one. This stabilization property can be used to reduce the cost of
the representation phase. During the affectation phase, we just have to monitor whether the
clusters are modified. If Cl−1

u = Cl
u, then for all k ∈ {1, . . . , N}, Dl−1(u, k) = Dl(u, k). This

algorithm induces a very low overhead, and experiments in section 4 clearly show that the
gain out weights the overhead.
The proposed memorization scheme, while very efficient, has a very coarse grain. Indeed,
a full calculation of Dl(u, k) for two values of u (i.e., two clusters) can be triggered by the
modification of the cluster of an unique observation. It is therefore tempting to look for a
finer grain solution. Let us consider indeed the case where the cluster of only one observation,
xi, is modified. More precisely, we have cl−1(k) = cl(k) for all k 6= i. Then for all u different
from cl−1(i) and cl(i), Dl(u, k) = Dl−1(u, k) (for all k). Moreover, it appears clearly from
the definition of Dl(u, k), that

Dl(cl−1(i), k) = Dl−1(cl−1(i), k)− d(xi,xk) (3)

Dl(cl(i), k) = Dl−1(cl(i), k) + d(xi,xk) (4)

Applying those updating formulae induces 2N additions and N affectations (loop counter is
not taken into account). If several observations are moving from their “old” cluster to a new
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one, updating operations can be performed for each of them. In the extreme case where all
observations have modified clusters, the total number of additions would be 2N2 (associated
to N2 affectations). The pre-calculation phase of algorithm based on partial sums has a
smaller cost (N2 additions and N2 affectations). This means that below approximately N

2
cluster modifications, the update approach is more efficient than the full calculation approach
for the Dl(u, k) sums. It is worth noticing that when full calculation approach is needed,
algorithm based on memorization of previous values of partial sums, Dl−1(u, k), can be used.

4 Experiments

4.1 Performances on a simple benchmark

The proposed optimized algorithms have been evaluated on a simple benchmark. It consists
in a set of N vectors in R

2 chosen randomly and uniformly in the unit square. A DSOM
with a hexagonal grid of size M = m ×m models is applied to those data considered with
the square euclidean metric. We always used L = 100 iterations and a Gaussian kernel for
the neighborhood function.

We report first some reference performances1 obtained with the brute force implementation.
We have tested five values for N the number of observations, 500, 1 000, 1 500, 2 000 and
3 000. We tested three different sizes for the grid, M = 49 = 7 × 7, M = 100 = 10 × 10
and M = 225 = 15× 15. To avoid too small clusters, high values of M were used only with
high values of N . We report those reference performances in seconds in table 1 (empty cells
corresponds to meaningless situation where M is to high relatively to N).

N (data size)
M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 11.9 55.0 132.1 259.6 779.6

100 = 10× 10 119.7 291.5 563.0 1678.1

225 = 15× 15 1479.6 4224.9

Table 1: Running time in seconds of the DSOM brute force algorithm

The running time is clearly behaving quadratically in N and is therefore increasing rather
quickly. The dependency on M is roughly linear as expected. Table 2 reports the ratio
between running time of the algorithm based on partial sum precalculation and the one of
the brute force algorithm. Improvement are quite impressive. In theory, the theoretical ratio
should be proportional to NM

N+M2 . This relation is approximately followed by the reported
running time.

We review the speed up provided by the early stopping algorithm without/with an ordering
strategy. Reported ratios are calculated based on the running time of the optimized DSOM
(partial sum precalculation). This experiment clearly shows that the ordered early stopping
algorithm improves greatly performances of the optimized DSOM.

Table 4 summarizes improvement factors obtained by combining the hybrid memorization
algorithm with the ordered early stopping algorithm (threshold of N

10 was used).

1Algorithms have been implemented in Java (JRE 5.0 of Sun) on a workstation equipped with a 3.00 GHz
Pentium IV with 1Go of main memory running the GNU/Linux operating system.
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N (data size)
M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 0.9 2.4 5.0 8.8 22.4

100 = 10× 10 6.1 10.4 15.9 33.2

225 = 15× 15 74.9 120.6

Table 2: Optimized DSOM algorithm (reference algorithm: brute force algorithm)

N (data size)
M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 1.04/1.1 1.03/1.05 1.01/1.04 1.01/1.01 1.02/1

100 = 10× 10 1.18/1.4 1.14/1.31 1.10/1.21 1.05/1.11

225 = 15× 15 1.40/2.53 1.37/2.16

Table 3: Early stopping without/with ordering (reference algorithm: optimized DSOM)

The running time of the completely optimized algorithm are in fact compatible with a real
world usage for moderate data size. Indeed, running the DSOM on 3 000 observations with
a 15× 15 hexagonal grid takes now less than 43 seconds on the chosen hardware. The brute
force algorithm needs more than 4 200 seconds (that is, more than one hour and ten minutes)
to obtain exactly the same result. Optimized DSOM uses 121 seconds on the same data.

4.2 Real world data

To evaluate the proposed algorithm on real world data, we have chosen a simple benchmark:
the visualization of a small English dictionary. We used the SCOWL word lists (Spell check-
ing oriented word lists (K. Atkinson), available at http://wordlist.sourceforge.net/).
The smallest list in this collection corresponds to 4 946 very common English words. After
removing plural forms and possessive forms, the word list reduces to 3 200 words.

Words are compared thanks to a normalized version of the Levenshtein distance, also called
the string edit distance. We used the DSOM algorithm with M = 225 = 15 × 15 models
organized in an hexagonal grid. As for the artificial data, we used L = 100 iterations and a
Gaussian kernel for the neighborhood function. Table 5 reports the running time in seconds
for the brute force DSOM algorithm, for the optimized algorithm and for the fully optimized
version with early stopping and memorization.

In order to illustrate the practical relevance of the DSOM, we can comment the result obtained
on the English word list. Figure 1 represents a small part of original map (space constraint
prevent us from representing the whole map). Each cluster is represented with its associated

N (data size)
M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 1.70 1.84 2.01 2.03 2.31

100 = 10× 10 1.84 1.79 1.70 1.80

225 = 15× 15 2.74 2.81

Table 4: Memorization and ordered early stopping (reference algorithm: optimized DSOM)
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Algorithm Brute Force DSOM Optimized DSOM Fully optimized DSOM

running time 4185 140.1 75.4

Table 5: Running time for English word list (3 200 words)

feed
fell

hell
sell

simply
vaguely

feel
fill

skill
heavily

quickly
quick

−accidentally
failing

family
easily

basically
practically

light
ability

easily
really

particularly
practical

complaint
constraint

policy
only

partially
partial

contained
continued

contrary
continually

partially
posting

Figure 1: Organization of the prototypes for the 3 200 word list. Part of the original map

prototype. As the words have not been stemmed, this part of the map is dominated by
termination (word ending by “ly”). If we study the whole map, we observe that the map is
well organized and close prototypes in the map are also close for the Levenshtein distance.
Cluster contents are also satisfactory. For instance, the cluster associated to prototype “up”
contains “cup”, “dump”, “gun”, “jump”, “upon” “us” and “up” itself.

5 Conclusion

We have proposed in this paper a modified algorithm for the SOM on dissimilarity data.
This algorithm allows an important reduction of the theoretical cost. Moreover, we have
introduced additional optimizations that allow to reduce the actual running time. We have
validated the proposed implementation on both artificial and real world data. Experiments
confirm the benefit of this new algorithm. They also showed that the additional optimizations
introduce no overhead: under favorable conditions, running time can be divided by 2.5.
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