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Abstract - This paper introduces a hierarchical self-organizing neural network solving multi-
ple traveling salesmen problem in an inspection tasks with limited visibility in an environment
with obstacles. The working environment is represented as a polygon with holes. The inspec-
tion task is decomposed into two sub-problems: a) generation of sensing locations (Art Gallery
Problem - AGP) and b) connecting of found locations by a set of paths (Multiple Traveling
Salesmen Problem - MTSP). Both sub-problems are NP-hard and therefore algorithms finding
approximate solutions are used. The AGP solver is based on randomized sampling of the en-
vironment, while a self-organizing neural network solves the MTSP. Moreover, the visibility
range s limited in real applications. Low wvisibility leads to increase of number of sensing
locations and therefore increases time costs of the MTSP planning. The proposed approach
constructs a hierarchical set of sensing locations that allows stepwise learning process of the
neural network. The neural net previously learned for limited number of sensing locations is
used to enforce learning for higher number of sensing locations.

Key words - Inspection Task, Robot Path Planning, Multiple Traveling Salesmen
Problem

1 Introduction

An inspection task is one of studied problems upon robot path planning. An application of
the inspection task can be in search and rescue scenario, in which possible victims have to be
found [1]. The problem is to find a route such that a robot surveys whole working space while
it moves along the route. The given problem can be constrained so, that the environment is
a priori known and it is represented as a polygon with holes. Moreover, a visibility range of
the robot can be limited. Considering more complex problem when multiple robots operate
in the same environment two criteria evaluating optimality of the found solutions can be
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defined. The MinSum criterion is denoted as a total length of the routes, while the MinMaz
criterion requires to minimization of the longest route.

Several existing approaches are based on decomposition of the search problem into two sub-
problems, determination of sensing locations and planning routes over found points. The
sensing locations are places in the environment where sensing (search) is performed to ob-
serve all points of the environment. The first problem is also known as Art Gallery Problem
(AGP) [2] and the second problem is Multiple Traveling Salesman Problem (MTSP) [3], [4].
Both problems are known as NP-hard. The Art Gallery Problem for a polygon with holes P
is more precisely defined as the problem of finding a minimum set of points G (guards) in P
such that every point in P is visible from some point of G. If sensing capability of robots is
limited to distance d, we can talk about d-visibility (we say that two points in P are d-visible
if they are visible and their distance is less than d). An approximation solution of the AGP
can be based on randomized dual sampling schema [2] that typically finds less number of
sensing locations than theoretical bound.

However a transformation from MTSP to TSP was proposed in [5], the solution of the trans-
formed problem is highly degenerated for the MinMax criterion of the original MTSP prob-
lem [6]. That is why the presented approach solves MTSP directly.

The rest of this paper is organized as follows. An algorithm finding sensing locations is de-
scribed in section 2. A self-organizing neural network approach for the MTSP for polygon
with holes is presented in section 3. Reduction of time requirements of the neural network
algorithm for high number of sensing locations is described in section 4 followed by experi-
mental results.

2 Determination of sensing locations

The implemented algorithm is based on modified randomized dual sampling of the environ-
ment [7]. The inputs of the algorithm are a visibility radius of robot d and a map of the
environment represented as a polygon with holes and a number of randomly placed points n.
The output of the algorithm is a set of sensing locations C' which contains locations necessary
to complete survey of the whole environment having the limited visibility distance d. The
algorithm incrementally adds points to the map while a volume of non-covered region S is
larger than 0. In the initial step, the non-covered region S is the whole free-space of the
map. Afterwards in the placement procedure, a random point p; at the border of a region
S is placed randomly and the visibility region of p; in map is computed (denoted as A(pp)).
This visibility region is then cropped by the visibility distance d, V,, = Y¢(A(py)). A given
number of points are placed into the cropped visibility region p; = p(V},), i = 1,...,n. For
each placed point a cropped visibility region in map is computed V; = Y¢(A(p;)). From these
points a sensing location p* is selected according to a maximal area of the region V;. The
covered region from point p* is subtracted from the not covered region S. The placement
procedure is repeated until the whole environment is covered.

3 Route finding

Sensing locations found by the algorithm described above stand for the input cities for the
MTSP algorithm. A self-organizing neural network algorithm [3] extended for environments
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with obstacles [4] was used. The algorithm finds an approximate solution of the Euclidean
instances of the MTSP for m salesmen. A route of each salesmen starts and finishes at the
same city called depot. The main idea of the algorithm is to represent a path of each particular
robot (salesman) by a ring of neurons, where neighboring neurons are connected. A ring of
connected neurons is generated around depot for each salesman. A number of neurons in the
ring is M > 22 where n is number of cities and m is number of salesmen (ring).

The algorlthm consists of two main steps. The first is an adaptation procedure of the closest

neuron from each ring to the depot, while an adaptation of the closest neuron to each city
is performed in the second step. The shortest path between the neuron V . and the city

¢ is weighted according to difference from an average length of rings : dzstance( k],c) =
Z/fjj — |- (1 + W), where r; is i-th ring, len(r;) is length of the ring r; and avg

is an average length of the rings. The operation adaptatzon( fj*,c) is a movement of the

neurons l/k] from nelghborhood vk i+ such that u i.d + ;e G2 - |vE. — ¢|, where

d = min{|j*—j|, M —|7*—j|}, j* is an index of the closest neuron in the i-th rlng to the city
c. A value of G is decreased in each iteration loop by G = (1 — a)G. Initial value of G and p,
« are parameters of neural network. The number of neurons in the neighborhood depends on
the number of neurons in the ring M, it was selected % The algorithm terminates whenever
all the cities have a unique closest neuron and maximum distance between the city and its
closest neuron is smaller than the minimal distance between cities.

A crucial point of the algorithm is determination of distances between a neuron and a city. For
environments without obstacles this is can be achieved by evaluation of Euclidean distance.
In cases when obstacles are present in the environment, the distance between two points have
to be computed with respect to the obstacles. Such distance is called Fuclidean geodesic.
A suitable structure for effective determination of the shortest distance between city and
neuron is Shortest Path Map (SPM). A sub-quadratic algorithm for computing the SPM
presented in [8] was used.

The second issue of the algorithm for a polygon with holes is determination of the length of
the ring. Therefore, instead of computing lengths of rings directly, the length of the ring is
computed as a length of a path traveled by each salesman that visits cities along the ring.
The nearest neuron is determined for each city C; and all neurons in the order they appear
in the ring are sequentially examined. If the neuron is nearest to some city this city is added
into a sequence of cities visited by the salesman. The complete length of the ring is then
defined as a sum of geodesic distances between adjacent cites in the sequence.

The planned routes for each salesman are post-processed by inexpensive 2-opt procedure
that improves the solution without a great affect to the solution costs. The post-processing
eliminates possible self-crossing of the found tours that can occur when dropping into a local
optima due to distance among obstacles.

Neuron oscillations during the adaptation procedure were observed in some iterations for en-
vironments with obstacles. This oscillations occur in situations if neurons are not distributed
uniformly among cities during the adaptation process. This leads to situations that one neu-
ron is closest to two cities. The oscillations can be prevented by adjustment of a learning loop
constrains - the learning procedure can be terminated if G is small enough. Another approach
could be based on detection of oscillations of particular neuron between cities followed by
adding neurons to the ring what eliminates oscillations.
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4 Hierarchical adaptation process

If a visibility distance is small compared to the size of a working environment a number of
sensing locations is too high to solve the MTSP problem in a reasonable time. Experiments
show that a learning procedure for the neural network described in section 3 is achieved in
less than 40 steps for parameters : a = 0.2, 4 = 0.6 and initial value of G = 12 - n, where n
is number of cities. The value of G is high in the first cycles of the learning process inducing
that neurons are moved by a long distances. During adaptation G is decreasing, what causes
only local changes in the network. Finally, the learning is terminated whenever the longest
distance from the closest neuron to each city is less than shortest distance between two cities.
That means no other improvements can be made, while all cities has the unique closest neuron
and movements of neurons are very small according to small value of G.

The time of the adaptation procedure depends on number of neurons that increases with a
number of cities according to formula M = %, where n is the number of cities and m is
the number of salesmen. The number of cities (sensing locations) moreover increases with
decreasing visibility distance.

The main idea behind speed improvement of the neural network for a large number of sensing
locations is to train the network for a small number of cities representing the whole set of
sensing locations in order to roughly sketch the paths. The number of cities is increased in
the following steps so that a global shape of the paths stays unchanged while local parameters
of the paths are modified in order to visit newly added cities.

To use this idea, a hierarchy of sensing locations (cities) is such that each layer of the hierarchy
contains sensing locations for particular visibility distance is created. The construction of the
set benefits from the fact that the algorithm for finding sensing locations is incremental. The
hierarchical set can be therefore found as follows. Let n; be a number of sensing locations Cy
for a visibility distance d; and a visibility distance ds is smaller than d;. Sensing locations
for ds can be found as sensing locations that cover whole working space without area covered
by locations in C with the visibility distance ds.

The set C = {C1,Cy,...,Cp} forms a hierarchy of cities. The neural network starts to learn
positions of cities for the first layer of the hierarchy. This can be done very fast, while the
number of cities is relatively small at this point. After that, the set of cities is extended with
cities from the second layer. A number of neurons is now higher and the rings have to be
recreated. The neurons that are closest to some city in the old ring are transfered to a new
ring. Other neurons are equally placed between old neurons which lie on the cities and the
adaptation process is re-started with increased G. The process is repeated unless the last
layer of the hierarchy is achieved. This is shown in the Algorithm 1.

5 Experiments

Two polygonal maps were used in experimentally verify the developed algorithm - TestArea
with 105 vertices and 2 holes and PhysicalBuilding with 105 vertices and 3 holes. The first
map represents an office building with a large free-space, while the second one consists mainly
of corridors. Sets of cities in hierarchies were computed for several visibility distances. Main
parameters of hierarchies of cities is shown in Table 1. h denotes the number of layers in
each hierarchy and the Abbreviation column contains a shortening that is used in consequent
tables.
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MTSP problem with hierarchy of cities in an inspection task with limited visibility

Algorithm 1: Self-Organizing Neural Network with Hierarchy of Cities. The hierarchy of
cities denoted as the set C = {C1,Cq,...,Ch}, where C; is set of cities such that C7 C
C5 ... C C}y. Number of neurons in the ring for the set of cities C; is M;.

Initial learning on Ci, for 6 =61, G =12 |C4|
foreach C; € {Ca,...,Ch} do
Ezxtension of rings
Ne=10
foreach ¢ € C;_7 do
Ve = argminyen {distance(v, c)}
N, = N.U{v.}
end
foreach r; € R do
ri ={vlv € r; N N}

M;|—|r’ .
Add ! Z“T,“ il peurons equally between each two neurons in 7}

i

L end
o _|Mi]

G =207
| Learning on C; with rings v, ..., 7},
Name Abbreviation & Visibility dist. [m] Cities in hierarchy
TestArea-258 T-258 3 4.5,2.5,1.9 56, 133, 258
TestArea-571 T-571 4 4.5,2.5,1.9,1.3 65, 127, 246, 571
Test Area-1054 T-1054 4 5.4,20,1.2, 09 46, 215, 582, 1054
PhysicalBuilding-225 P-225 2 6.0, 3.0 84, 225
PhysicalBuilding-548 P-548 3 6.0,3.0,1.9 84, 229, 548

Table 1: Environment.

Several tests were performed for each hierarchy and for 2 and 3 salesmen. The maximal route
length from each particular solution of MTSP was used to compute average and standard
deviation values. All tests were performed on Pentium IV at 3.2GHz running Linux 2.6.9
and Java BlackDown 1.4.1. Computational results are shown in Table 2. The Time column
show computational time in seconds, while Time % shows percentage of time of the proposed
algorithm compared to time of the algorithm without the hierarchy of cities. RL describes
maximal route length of the proposed algorithm over the algorithm without the cities hierar-
chy in percent. The longest route found by the proposed algorithm was not longer than 5%
and time requirement was up to 37% of the algorithm without the cities hierarchy.

The highest number of iteration of learning procedure is in the first layer, Table 3. The column
Other shows an average number of iteration in the next layers. TTL shows percentage of
time spent in the last layer of the cities hierarchy. However the number of iterations in the
last layer is smaller than in the first layer, major time is spent in the last layer.

The solution for the first layer of TestArea258 is shown in Figure 1, number of cities is 56.
The solution for the next layer, 133 cities, is shown in Figure 2. Final solution for 258 cities
is shown in Figure 3.

95



WSOM 2005, Paris

Map n NN Proposed
Time Avg Dev Time Avg Dev Time % RL %
T-258 2 32.5 254.18 10.30 8.6 264.15 15.93 26.4 103.9
3 29.9 181.42 6.84 7.8 188.90 8.37 26.2 104.1
T-571 2 1857 34237 7.71 48.2 354.36 13.06 26.0 103.5
3 175.4 240.41 8.42 45.7 250.96 12.10 26.0 104.4
T-1054 2 699.5 441.21 6.23 165.5 456.64 18.67 23.7 103.5
3 635.2 30843 6.95 148.4 322.81 10.82 23.4 104.7
P-225 2 21.3 487.73 30.00 8.2 508.68 18.59 38.4 104.3
3 20.7 408.16 33.68 8.1 408.55 28.50 38.8 100.1
P-548 2 142.6 594.23 32.17 37.8 607.43 21.34 26.5 102.2
3 142.3 493.80 38.60 41.1 482.37 39.18 28.9 97.7

Table 2: Computational results

Map n Iteration in Layers TLL %
Total First Other

Test Area-258 2 40 28 6 64.3

TestArea-571 2 50 30 6 82.3

TestArea-1054 2 49 27 7 77.6

PhysicalBuilding-548 2 42 29 6 83.1

PhysicalBuilding-225 2 40 32 8 67.1

Table 3: Number iteration and time in layers of hierarchy.

Figure 1: Learned net for first layer of hierar- Figure 2: Learned net for second layer of hi-
chy, TestArea. erarchy, TestArea.

Due to lower value of GG in each new layer, a solution is dropped to a local optima. If the value
of GG is increased the neural network can leave the local optima. The influence of the new G
value for an upper layer in a hierarchy was studied. A new variable LGAIN was introduced in
step 11 of the Algorithm 1. LGAIN represents a learning gain parameter of the neural network
in a new layer of the hierarchy of cities. Whenever value is increased, movements of neurons
during adaptation are greater, i.e. a smaller amount of learned information from previous
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Speed improvement by Learning Gain
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Figure 3: Learned net for last layer of hierar- Figure 4: Time dependency on learning gain,
chy, TestArea. 2 Salesmen, TestArea.

steps is used in the current step. In other words, the LGAIN variable defines the distance in
which neighboring cities can move from their positions.

The assignment of G was modified to G := LGAIN-2 | 114]\@1\ . Solutions of problem were found for
several values of LGAIN. A dependency of solution time on the value of LGAIN for 2 salesmen

is shown in Figure 4 and in Table 4.

Map n LGAIN: 0.6 LGAIN: 1.0 LGAIN: 5.0 LGAIN: 20.0
T™ % RL% T™™ % RL% T™M % RL% TM % RL %

T-258 2 22.9 103.5 26.4 103.9 62.6 98.5 74.3 99.6
T-571 2 21.1 104.4 26.0 103.5 47.3 98.6 75.1 99.5
T-1054 2 21.3 104.6 23.7  103.5 48.6 100.7 65.6 99.9
P-548 2 23.1 102.5 26.5 102.2 45.5 100.6 64.9 100.5
P-225 2 35.4 105.1 38.4 104.3 57.7  103.1 74.9 101.3

Table 4: LGAIN influence.

6 Conclusion

An extension of self-organizing neural network approach of MTSP for large number of cities
has been proposed. It uses hierarchical sets of cities, which are generated by a randomized
dual sampling algorithm for AGP. A high number of cities arises from limitation on visibility
distance of robots that performs an inspection task. The neural network is trained on a smaller
problem. Then a learned structure of the environment is used to enforce learning procedure
of a larger problem. This approach reduces the number of iterations in the largest problem,
whereas time requirement of single iteration is the most expensive.

However, time complexity of the proposed algorithm in the last layer of the hierarchy is the
same as time complexity of the algorithm without the cities hierarchy, the real time improve-
ment of the proposed extension for learning procedure is approximately by factor 3. A cost
of speed improvement is worse quality of solution, approximately by 4%. The speed im-
provement and quality of the solution can be controlled by the LGAIN parameter. Principally,
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higher value of the parameter leads to a better solution but with higher time requirements.
The original Somhom’s algorithm was compared with heuristics, elastic net and adaptive
tabu search in [3]. A comparison of the proposed approach without cities hierarchy with Ant
Colony optimization and Genetic Algorithm was published in [4]. A quality of solutions were
equal while the solution cost of the proposed approach is lower. The approach was tested
in two environments for various number of cities. The environments were represented as a
polygon with holes and they have been derived from a CAD model of a real building. One
of the future work can be a testing proposed approach on other environments to get more
significant results.

When visibility distance is very small the shortest distance between cities can be also very
small. This leads to more learning steps. The learning procedure can be terminated before
all the cities have a unique neuron. Than missing cities in planned routes have to be added
into some route.

Additional speed improvement can be based on more local search procedure. Parts of a ring
can be defined for each ring from previous learning procedure. In case we define for each city
its neighborhood (i.e. cities that are not far than some certain distance) the adaption process
can be local for each part of rings and neighborhoods of cities.
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