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Abstract - Projection Pursuit (PP) is a powerful yet undervalued dimension reduction tech-
nique that provides linear projections of high-dimensional data into a low-dimensional target
space. Thereby, the projection axes are chosen by optimization of an index function which
aims, in unsupervised scenarios, for example at a central mass view or at maximum data
spreading. Here, an efficient index function is developed for unsupervised optimum distance
reconstruction between the source data and their projections. The distance relationships re-
sulting from the proposed distance-preserving projection pursuit (DiPPP) are much more faith-
fully maintained than by principal component analysis (PCA), and, additionally, DiPPP can
be applied to huge data sets or even to data streams. The power of DiPPP is demonstrated
for dimension reduction of a large set of gene expressions describing developmental series of
cDNA experiments with 11,786 genes.
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1 Introduction

First stages of raw data analysis are often accompanied by only poor prior knowledge about
the given data. In these cases, dimension reduction techniques help simplifying data com-
plexity and they support visualization for revealing structural dependencies within the data.
If only a few continuous-valued attributes from a few experiments are under consideration,
scatter plots provide the most direct data displays. For high-dimensional input, principal
component analysis (PCA) is one of the most prominent linear projection techniques, which
defines interesting projection dimensions mathematically as the directions of largest vari-
ance [4]. Principal curves and surfaces are one- and two-dimensional non-linear counterparts
of PCA that pass through the curved ’middle’ of the original data manifold, onto which data
are projected [3]. The self-organizing map (SOM) is a well-established neural alternative
for getting non-linear clusterings of data on a low-dimensional rectangular or a hexagonal
lattice of specialized neurons, thereby preserving the original data topology. This lattice
can be nicely visualized as U-matrix or as attribute planes [5]. The visualization induced
SOM (ViSOM) is an extension of SOM aiming at integrating distance preservation in addi-
tion to topology preservation [10]. Alternative to SOM, locally linear embeddings (LLE) and
Isomap have been proposed for taking into account the properties of data neighborhoods or
the underlying data manifolds [7, 9]. These two methods combine different computational
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modules ranging from local PCA of k-means clusters to finding shortest paths in the data.
Multidimensional scaling (MDS) [6] is another powerful visualization tool for fixed data sets,
which operates on the distance matrices of the original data and of their low-dimensional
reconstructions, usually imposing high memory and computing load, although an efficient
high-throughput MDS implementation (HiT-MDS) has been proposed recently [8]. However,
there is still much potential in linear data models, because once a mapping is computed, it
yields very fast projections of unknown data and, additionally, it can be used for factor analy-
sis. Projection pursuit PP refers to a bunch of linear projections which result from optimizing
a user-defined projection index [1, 2]. For labeled data, the optimization goal might be the
one to project data into the visualization plane in such a way that the entropy is minimum,
i.e. classes are best separated. For unlabeled data, the criterion might be maximum spatial
spreading or, on the contrary, the projection onto the central data mass. Obviously, the
choice of the projection index allows to focus on different properties of the data. However,
in order to obtain the most faithful linear projection, the notion of ’faithfulness’ must be
defined carefully. The unsupervised approach presented in the following is very intuitive:
a projection is said to be faithful, if the distances between the projected points correlate
best with the original distances. Like the original SOM, the proposed distance-preserving
projection pursuit (DiPPP) works in an iterative training manner for obtaining faithful data
mappings. But in contrast to the prototype-based SOM, DiPPP maintains the individuality
of each input point and still yields strikingly compact models.

2 Distance-Preserving Projection Pursuit (DiPPP)

The linear projection of q-dimensional patterns xi ∈ Rn×q to points x̂i = (x̂i
1, . . . , x̂

i
d) in the

d-dimensional target space Rn×d is given by:

X̂ = X · P, P ∈ Rq×d. (1)

The complete projection model is thus determined by the parameters plk of the projection
matrix P, and the challenge of projection pursuit lies in finding these free parameters. For
distance preservation between input and output space, the most canonic approach to forcing
the mutual distances d̂ij = d(x̂i

P, x̂j
P) of all data pairs projected by x̂i

P = xi · P to best match
the original distances dij = d(xi, xj) is defined by minimizing the raw ’stress’ function

s =
n∑

i=1

n∑

j=1

(dij − d̂ij)2
!= min with distances dij(xi, xj) =

d∑

k=1

(xi
k − xj

k)
2.

For computational convenience, the squared Euclidean distance can be taken and symmetry
dij = dji can be assumed for the distance matrix. Formally, the above stress function looks
like Sammon’s nonlinear mapping, the straightforward approach to multidimensional scaling
(MDS). Here, however, the points x̂i cannot be moved freely in the d-dimensional target
space, but they are constrained by the projection mapping P, which implies to distances
d̂ij , and thus to the MDS scheme, a further level of indirection. Since the derivative ∂d/∂X̂,
being optimized to 0 during the minimization of Sammon’s stress function, is a factor of the
projection pursuit optimization

∂s
∂P

=
∂d

∂X̂
· ∂X̂

∂P
!= 0 with

∂X̂

∂P
= X (cf. Eqn. 1) ,
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finding optimum P is at least as difficult as optimum X̂ in Sammon’s mapping. Therefore,
in the following, the original goal of minimum square distance reconstruction is relaxed to
a stress function for finding maximum Pearson correlation r ∈ [−1; 1] between the pattern
distances D = (dij)i,j=1...n and those of the reconstructions D̂ = (d̂ij)i,j=1...n:

r(D, D̂) =

∑n
i 6=j (dij − µD) · (d̂ij − µD̂)

√∑n
i 6=j (dij − µD)2 ·

√∑n
i 6=j (d̂ij − µD̂)2

=:
B(d̂)

√
C ·

√
D(d̂)

!= max .

This expression allows corresponding Shepard plots with points (dij , d̂ij) to target via d̂ij at
lines of arbitrary gradient, not only to the unit diagonal imposed by Sammon’s mapping. The
right fraction is a convenient one-to-one correspondence to the sums in the left hand term,
which will be used in the following: B(d̂) is related to the mixed summation of both original
and reconstructed distances, D(d̂) refers to the dissimilarities dependent on the choices of the
reconstructions X̂, and C denotes the connection to the initially calculated, thus constant,
input pattern distances. The dependence on d̂ is linked via X̂ to the parameters P of interest.
Using, for better convergence, the transformation of r into a power function to be minimized as
discussed in [8], we consider the stress function s =

(
r(D, D̂)

)−2K with integer exponents K.
Euclidean distances are taken for getting faithful data visualizations:

D̂
(
X̂(P)

)
=

(√∑d

k=1
(x̂ i

P k − x̂ j
P k)

2
)

j 6=i ,
i,j=1...n

with x̂u
P k =

q∑

l=1

xu
l · plk .

Thus, distance relationships coded by D are reconstructed by minimizing inverse powers r−2K

in order to obtain optimum parameters for projecting the data into the Euclidean target space.
The minimization is achieved by a gradient descent on the stress function s, which requires
finding zeros of the derivatives of s w.r.t. to the free parameters plk, l = 1 . . . q, k = 1 . . . d:

s = r−2K
(
D̂

(
X̂(P)

)) != min ⇒ ∂s
∂plk

=
n∑

i=1

n∑

j=1

∂r−2K

∂d̂ij

· ∂d̂ij

∂x̂ i
Pk

· ∂x̂ i
Pk

∂plk

!= 0 (2)

Solutions are found by iterative updates ∆plk = −γ · ∂s
∂plk

of step size γ into the direction of
the steepest gradient of s. The missing derivatives in Eqn. 2 are

∂r−2K

∂d̂ij

=
∂ (C ·D(d̂))K

B(d̂)2K

∂d̂ij

= −2 ·K · r−2K−1 · (d̂ij − µD̂) ·B(d̂)− (dij − µD) ·D(d̂)

B(d̂)3
,

∂d̂ij

∂x̂ i
Pk

= 2 · (x̂ i
Pk − x̂ j

Pk)
/√∑d

l=1
(x̂ i

Pl − x̂j
l )2 ,

∂x̂ i
Pk

∂plk
= xi

l .

The direct implementation of Eqn. 2 with the update formulas from Eqn. 3 for all q×d entries
plk and for all pattern pairs Xi,Xj would be computationally very costly. Therefore an
approximating online version is proposed in the following.

3 Online DiPPP

A straightforward simplification of Eqn. 2 is obtained by replacing the total integration over
all pattern pairs by stochastic pattern presentation: the projection matrix (plk)l=1...q,k=1...d is
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iteratively updated for randomly drawn pairs (xi, xj). A crucial step towards high-throughput
processing is the internal data storage in DiPPP: the projection pursuit of n data items
requires a storage capacity of order O(n2) for the mutual distances; therefore, computations
are reduced to a small online working memory with L ≤ n data points. In the following,
symmetric RL×L distance matrices are assumed, referring to a subset of already presented
data points and their projections. The general processing consists of 〈1〉 presenting a new
data item, 〈2〉 projecting that item via P, and 〈3〉 minimizing the discrepancy of its distances
to a few N other projections in the working memory with the corresponding source data
distances. This way, the current pattern is related to what is stored in memory. It has
turned out that, using many training iterations, relating this pattern to a single pattern
randomly drawn from memory suffices for obtaining good results.

The general iterative procedure for finding distance-preserving linear projections is outlined in
Algorithm 1. Optimum projection values are obtained in a neural network training manner
by repetitive presentation of input data. Instead of the random projection initialization,
PCA eigenvectors could be used, or plk values from previous runs. In batch mode, one would
present all available data for several cycles and print the projected data and the projection
parameters after training; in online mode, one would, after a reasonable pre-training, print
the currently calculated projections immediately at pattern presentation time.

Algorithm 1 DiPPP

1: Read first L input data points X ∈ RL×q to working memory.
2: Initialize P ∈ Rq×d randomly with plk ∈ (− 1

L ; 1
L), or read initial plk from file.

3: repeat
4: Draw next pattern x, overwrite random position xi ← x in working memory.
5: Project data by X̂P ← X · P. If online mode, print x̂i

P.
6: Calculate distance matrices D ∈ RL×L ⇒ C and D̂ ∈ RL×L ⇒ B(d̂), D(d̂).
7: for N times do
8: Draw a random index 1 ≤ j 6= i ≤ L pointing to xj , x̂j

P in working memory.
9: for all (l, k) ∈ [1; q]× [1; d] do

10: plk ← plk − ∂r−2K

∂d̂ij
· ∂d̂ij

∂x̂ i
Pk
· ∂x̂ i

Pk
∂plk

{ adapt plk according to Eqn. 2 }
11: end for
12: end for
13: until convergence criterion is met or no more data available.
14: If batch mode, project all data; center and normalize by largest dimension variance.

Empiric studies on different data sets have showed that the proposed algorithm works good
with γ ∈ [0.0001; 0.1], exponent K = 1, 2. The total number of iterations depends on the
complexity of the input data and on the choice of the working memory size L. If there exist
reasonable projections, however, a number between 1,000 and 100,000 iterations is a first good
rule of thumb, even for N = 1 (cf. Alg. 1, l. 7), as mentioned earlier. Furthermore, by tracking
the development of distance correlations r(D, D̂) between input data and their projections
during training, the speed and the quality of convergence can be estimated. This is useful
information for choosing both the iteration number and the learning rate appropriately.
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Figure 1: Inter-experiment relationships projected into 2D based on the gene expression patterns.
Left: PCA, computed by SVD because of huge data dimensionality. Right: DiPPP.

4 Application to cDNA Array Expression Data

Two studies are presented that show the suitability of DiPPP for the analysis of high-
throughput expression data. In the experimental design, several thousand gene expression
patterns were analyzed corresponding to barley seed development, 0–26 days after flowering,
in three distinct tissues: pericarp (p), endosperm (en), and embryo (e). The two major
questions of interest are: 1. How are the experiments, representing the tissues at a par-
ticular developmental stage, characterized with respect to their transcriptome similarity of
specifically expressed genes? 2. Can clusters of genes be identified and are they identical for
repeated series of experiments? These key questions can be addressed by using DiPPP for
dimension reduction by faithful projections into visualizable planes.

1. Experiment Clustering The first DiPPP application aims at the visualization of the
inter-experiment relationships: a two-dimensional projection is wanted that preserves the
distances of the original space of gene expression intensities. The common way to do this is
principal component analysis (PCA) which, like DiPPP, is also a linear projection technique.
The analyzed data set comprises two series of 14 experiments for developmental stages 0. . .26
days after flowering (DAF) in barley endosperm tissue in steps of 2 days, and the final matrix
of interest consists of 28× 11786 logarithmic gene expression values.
Fig. 1 compares the experiment visualization of PCA (left) and DiPPP (right). Both pro-
jections show a temporal ordering of endosperm development from 00 to 26 DAF in a anti-
clockwise manner, starting at the lower right. DiPPP has been trained after random initial-
ization in batch mode with L = n = 28, γ = 0.005, and K = 2 for 2,500 iterations, taking
about 45s on a 3GHz-P4 machine, thereby adapting the 11786×2 projection parameters; due
to high memory requirements, PCA is calculated by linpack as singular value decomposition
(SVD) within 3s. Squared distance correlations characterize the display quality; they are
r2(X, X̂PCA) = 0.957 and r2(X, X̂DiPPP) = 0.986, indicating the superior distance preservation
of the DiPPP projection. Both panels in Fig. 1 show grouping of endosperm development into
distinct phases. For instance, pre-storage (0–4 DAF) is separated by a transition phase with
its biologically significant genetic reprogramming (6–10 DAF), followed by mid-storage phase
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(12–16 DAF) with final maturation/desiccation phase (18–26 DAF). Although the overall
reproducibility between two independent experiments is high, the slight discrepancy could
be observed at the beginning of the intermediate phase at 6 DAF. Additionally, 26 DAF
of experiment 1 is identified as outlier by both methods, and emphasized by DiPPP. After
all, the obtained DiPPP experiment groupings are very close to the best results of distance-
preserving multidimensional scaling with r2(X, X̂MDS) = 0.988 for the HiT-MDS method [8].
For the obtained DiPPP clusters, the identification of regulating key genes through factor
analysis of the the projection matrix P will be of great interest in future investigations.

2. Experimental Reproducibility of Gene Clustering A much more demanding ex-
periment is conducted with the extended version of the previous data set, now including
gene expressions of the pericarp and the embryo tissues in addition to the endosperm, adding
up to 31 developmental stages of barley. However, this data matrix is transposed in order
to focus on the clustering of similar genes in contrast to the previous grouping of similar
experiments. A linear projection has been calculated in online mode for the first series of
experiments, and the resulting parameters have been applied to the second series. If both
series were identical, no major differences should appear in the projections, which has been
investigated. In order to visualize the thousands of projected 31-dimensional points, density
plots are shown in Fig. 2. The left panel shows the projected genes for the first series of exper-
iments, dark spots indicating high densities of similar gene profiles. While the PCA projection
yields a distance preservation of r2(X, X̂PCA) = 0.878, DiPPP reaches r2(X, X̂DiPPP) = 0.911
for γ = 0.025,K = 1, a small working memory size of L = 250 after 58,930 iterations,
i.e. 5 cylces, in about 2 minutes. The final dimension reduction model, consisting of only
31×2 projection values, is applied to the second series of experiments; this yields a slightly
worse squared correlation of 0.898, which is still better than the PCA model of the same size,
but which already indicates a difference between the series. More than mere indication is
seen in the normalized density difference plot in the right panel of Fig. 2, zoomed to the box
shown in the left. Gray means equal gene densities for both experiments, which is found
for the major proportion in the image, thus pointing out a good overall correspondence be-
tween the two experiments. In addition, certain discrepancies can be observed: white patches
denote a bias towards experiment 1, and black a bias towards experiment 2. A systematic
difference, roughly depicted by the straight line, is found. The two high-difference clusters
C1 and C2 are related to the experiment-specific gene profiles inside the circles, their average
shapes are displayed in Fig. 3. Although the two profile ’prototypes’ are very similar, the
one for experiment 1 shows a distinct peak at day two for pericarp tissue (02p), which is a
difference confirmed by other methods. In the present gene projection task, DiPPP yields a
good and faithful visualization of the general distribution of the genes in their 31-dimensional
expression space. Fast gene mappings are obtained with a tiny projection model.

5 Conclusions and Outlook

The proposed distance-preserving projection pursuit DiPPP is useful for learning faithful lin-
ear mappings for which the mutual distances of the projections aim at matching the original
distances. A large set of gene expression data has been processed to show the general suit-
ability of DiPPP for batch learning of experiment groupings, and for online learning of gene
profile mappings. DiPPP has turned out to yield better distance preservation than PCA, if
distance correlations between source data and the corresponding projections are considered.
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Figure 2: Genes DiPPP-projected to 2D. Left: density plot of Euclidean projections of the 11,786 genes
from the first series of experiments. Right: densities of the projected second series subtracted from
the first image, zoomed to the box shown left. Overall differences are close to zero (gray), indicating
high correspondence of experimental reproductions. However, encircled areas C1 and C2 point out a
clear bias towards experiment 1 and 2, respectively. The related expression profiles are given in Fig. 3.
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Figure 3: Experiment-specific gene profiles in clusters C1 and C2 related to Fig. 2 given by average
and standard deviation. Top: cluster C1 containing 163 genes. Bottom: cluster C2 with 175 genes.
Both groups of genes refer to up-regulation of endosperm gene expression levels, emphasizing that
areas close in the projection Fig. 2 map back to similar genes profiles. Anyhow, C1 shows a distinct
peak at 02p and C2 exhibits specifically low embryo expression levels.
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Thus, DiPPP is favored over PCA in cases where the projection should not be biased towards
dimensions of maximum data variance, as PCA does by its definition. DiPPP is linear and at
the same time it aims at distance preservation; in these respects, DiPPP is located between
PCA and MDS, also with respect to the quality of distance preservation. The problem of
getting stuck in local minima does not exist for PCA; in DiPPP, however, local minima are
counteracted by using a correlation-based, well-converging projection constraint. Although
MDS-embeddings yield better low-dimensional models for fixed data sets, the benefit of the
linear distance-preserving DiPPP-method is easy inclusion and projection of new data. Thus,
as SOM, DiPPP is useful in many applications where easily interpretable data projections are
desired, such as for dimension reduction and visualization; in contrast to SOM, DiPPP train-
ing is faster, models are generally smaller and only linear, but all data points maintain their
individuality in the absence of neuron competition. Furthermore, DiPPP can be used for
converting similarity measures into Euclidean distances; the currently used Euclidean in-
put distance metric dij can just be replaced by any data similarity measure, such as general
Minkowski metrics, the cosine distance, or the Pearson correlation. Although the correspond-
ing similarity-preservation found by DiPPP might be poor due to its simple linear projection
model, still valuable data groupings can be obtained; this is currently studied and yet tenta-
tively confirmed for correlation-based color space conversion for enhancing microscope images.
A couple of questions will be addressed in the future regarding the choice of the working mem-
ory size L and the learning rate γ. Moreover, factor analysis will be considered by selecting
from P only those rows that contain information required to reconstruct by projection best
the original data. Further applications in bioinformatics are currently surveyed.
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