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Abstract - An algorithm of Self-Organizing Maps (SOM) that can extract features of DNA
sequences is introduced here. DNA sequences are considered to have characteristic features,
depending on regions the sequences are taken from or functions of proteins translated from
them. If hidden features of DNA can be extracted from sequence alone, they can be used for
predicting regions or functions of unknown sequences. This group developed algorithms that
organize sequences of specific lengths using SOM. This algorithm can select a smaller number
of sequences from all combinations of nucleotides for a given length. Sequences are organized
on 2-dimensional maps according to similarity. A batch SOM algorithm that updates the map
using a simulated annealing method to organize adjacent sequences more closely on the map
is described. Analysis of DNA sequences in terms of function of the translated proteins was
performed and results are presented.
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1 Introduction

Recently, entire genome sequences for some species have been determined. Many functional
studies of genes have been performed using both biological experiments and analysis of similar
sequences; however, new methods are required to hasten the determination of functions of all
genes in a genome. Furthermore, not all regions (regulatory, promoter, exon, intron, etc.) on
genome sequences have been characterized yet. To determine the function of genes or regions
on genome sequences, target sequences are compared with known sequences using alignment
algorithms. However, the computing power required for calculating alignment between a
target sequence and many known sequences is very large. Thus, a method that can efficiently
correlate a target sequence with a large number of known sequences would be very useful.
For this purpose, this group developed the SOM algorithm that extracts features of DNA
sequences as sets of DNA probes, comprised of short DNA sequences of speci ed length.
Hamming distance is used as the similarity measure between sequences, thus sequences with
smaller changes in nucleotides in the same position are organized closer on the map. Using this
algorithm, a smaller number of probes that represent representative features of the reference
sequence are selected on the map.
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Application of this algorithm for design of DNA chips has previously been reported [1][2].
DNA chips are powerful tools for sequence analysis that can be used for analysis of gene
expression, analysis of Single Nucleotide Polymorphism (SNPs) and sequencing by hybridiza-
tion. DNA chips comprised of longer probes have higher resolutions for sequencing by hy-
bridization and SNP analysis. However, the number of probes increases exponentially with
length of the probe using all combinations of nucleotides of a speci ed length. To determine
a 1000 bp DNA sequence, a DNA chip comprising probes longer than 8 kbp is desirable [3],
but the size may be larger without any design, as it requires 4% = 65536 probes to be com-
prehensive. Therefore, design of a DNA chip is important and SOM algorithms have worked
very well for this purpose. Adequate probes are selected using this method by considering
the number of selected probes, covering rate of the reference sequence and expected rate of
SNP detection using probes selected by SOM.

Maps organized by SOM can be applied to sequence analysis. SOM can also be applied to
analysis of the relationship between sequence and function [4]. In this report, a modi ed
algorithm for SOM, suitable for analysis of DNA sequence based on the sequence data itself
is described.

Analysis of DNA sequences by mapping sequences with speci ¢ functions and sequences taken
from speci ¢ regions on a map organized by SOM was also performed. Mapped sequences
show their own patterns, but the patterns become narrower at continuous regions, depending
on the function of the translated genes because adjacent probes on target sequences are
mapped in fragments on the map. If target sequences are mapped continuously, sequences
with common features (e.g. sequences with similar function, sequences from the same species
and sequences taken from similar regions) should be mapped in large clusters consisting of
adjacent probes with common features on the target sequences. For this purpose, the probes
and their shifted valiations should be mappped closely on the map and SOM algorithm is
modi ed so as to map sequences using a similarity measure that takes into account not only
changes in nucleotides but also the extent of shifting of probes. From this modi cation,
probes that match target sequence adjacently tend to be organized closely on the map. Each
region on the map extracts a feature of each domain on the reference sequence, thus the
target sequences are mapped adequately, depending on their relationship between each other
for the purpose of comparison of themselves.

Furthermore, the method for updating a map was changed from an incremental method to
a batch method. Using the batch update method, updates of units can be directed so as to
organize adjacent probes closely on the map. Here, a simulated annealing method to direct
organization of probes during the update phase is introduced.

Experiments organizing maps were performed using reference sequences obtained from genome
databases, categorized by species and gene function. Relationship between sequences used
for training was also examined by mapping sequences on an organized map.

2 Feature Mapping of DNA sequence by SOM

In conventional sequence analysis, sequences are mainly analyzed by using 1-dimensional
information. For example, motifs of known features are used for nding speci c regions of
sequences, alignment of known sequences and target sequences are carried out to identify
functions of target sequences, with a hidden Markov model used as the stochastic model
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of the 1-dimensional sequence. The relationship between DNA sequences is more readily
classi able if mapped appropriately onto a 2-dimensional plane.

For this purpose, this group chose the SOM algorithm as it can organize generic features of
DNA sequences by sufficient learning of known DNA sequences on a 2-dimensional plane. An
algorithm that trains self organizing maps of probes that are a vector of discrete values for
'A’C’G and 'T was also used by this group [2].

3 Batch SOM algorithm for the learning of DNA sequences

Experiments were performed by applying the SOM algorithm for selecting sets of probes that
represent features of DNA sequences [1,2]. Number of probes was reduced markedly from a
large starting set; however, this reduced number of probes could detect almost all nucleotide
changes able to be detected by all combinations of a probe of the same length. However,
efficiency of the algorithm was not good in terms of computation time and number of distinct
probes organized on the map.
Additionally, if consecutively hybridized probes are arranged adjacently on a map, sequences
will be mapped as continuous regions on organized maps and similar sequences will be mapped
closely on the map.
For this purpose, two modi cations to the algorithm were made and results reported [3]. At
rst, the search method was changed to winner units. In conventional SOM, all units on the
map are searched for a winner unit. In this group’ s modi ed algorithm, only neighboring
units of the preceding winner are searched for during learning of adjacent probes. If the
distance between winner in neighboring units and reference sequence exceeds the threshold,
the global winner is searched for from all units on the map. This modi cation improves not
only computation time but also layout of probes, organizing consecutive probes closely on the
map. Secondly, distance measure between the probe and reference sequence was changed. In
conventional SOM, hamming distance is used, so that elements in the same position between
two vectors are compared. For hybridization, a probe and its shifted probes (e.g. AGTCAT
and GTCAT™* or *AGTCA) hybridize closely onto the target sequences, so their distance will
be small. The distance measure was changed so as to compare two sequences, considering
the sequence shift of either one.
In this study, the update strategy was changed from an incremental method to a batch
method. Using a batch method, it may be possible to intentionally direct the update of
the units on the 2-dimensional map. For this purpose, a simulated annealing method in
the update phase was used. A probe associated to a unit is determined according to the
reference vectors associated with the unit and its neighboring units. The number of matching
nucleotides for each position is counted for each nucleotide ’A’’G’T” and ’C’ taking into
account shifts between the current probe associated with the unit and those associated with
neighboring units. The nucleotide at each position of the probe is determined stochastically
by a simulated annealing method depending on the number of the match for each nucleotide
"A’G’)T? or ’C’. Probes associated to the units on the map are determined gradually as
adjacent probes are mapped closely on the map. The detail of this algorithm is as follows.
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Batch SOM algorithm using simulated annealing

Step 1 Initialization
Initialize the map of probes of length L using the 1st and 2nd
principal components as base vectors of the 2 dimensional plane,
where L is length of the probe associated to each unit. Set BN=0.

Step 2 Batch learning phase
For each reference sequence, repeat the following steps.

Step 2.1 Initialize the buffer of the reference vectors associated to
each unit and set position of reference sequence P=P’=0

Step 2.2 From all of units on the map, search the winner units(W_U)
which is associated to the closest probe to the sub-sequence
of length L which starts from P’.

Step 2.3 If the difference between them is larger than THI,
go to Step 2.8, where TH1 is the threshold which decreases with
increment of BN.

Step 2.4 Add the sub-sequence starts from P’ to the buffer associated
to W_U.

Step 2.5 Update P=P‘+1, IF P >= SEQ_LEN-L go to Step 3,
where SEQ_LEN is length of reference sequence.

Step 2.6 Search the winner unit W_U from direct neighboring units
and position P’ on the reference sequence, where W_U is
associated to the closest probe from the sub-sequence
which starts from P’, where P <= P’ < P+ L/2

Step 2.7 If the difference between them is larger than TH2, go to Step 2.8,
where TH2 is the threshold which decreases with the increment
of BN and Th2>Thil,
else go to step 2.4.

Step 2.8 Update P=P’=P+1.
If P>=SEQ_LEN-L then
If all reference sequences are processed goto step 3
else select next reference sequence and set P=P’=0
go to step 2.2

Step 3 Batch update phase using simulated annealing
Step 3.1 Initialize the iteration number N=0 and set DT=log(TI/TT)/NA,
where TI is initial temperature, TT is terminate temperature

and NA is number of iteration in simulated annealing.

Step 3.2 Calculate the Unit[x] [y].upd[Pos] [Nuc] which is the number of
occurrences of nucleotide Nuc(’A’,’G’,’T’ or ’C’) at position
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Pos(1,2,...,L) in the buffer of Unit[x][y] for each unit.

Step 3.3 Calculate the Unit[x] [y].supd[Pos] [Nuc] which is sum of upd
values in the neighborhood of Unit[x][y] for each units as follows.

Step 3.3.1 Set Unit[x] [y].supd[Pos] [Nuc]=Unit [x] [y].upd[Pos] [Nuc]
Step 3.3.2 For all neighboring units Unit[xn] [yn] in distance D <= Nr(BN) do
Calculate the best match number of shifts SB between the
current probe associated to Unit[x][y] and Unit[xn] [yn],
where Nr(BN) is the maximum distance of neighbors at BN.
For each Pos and Nuc do
add Unit [xn] [yn] .upd[Pos+SB] [Nuc]/fn(d) to Unit[x] [y].supd[pos] [Nuc],
where fn(d) is neighborhood function.

Step 3.4 For each Unit[x] [y] and position Pos in the sequence, determine
a current probe stochastically as follows.

Step 3.4.1 Find the maximum of Unit[x] [y].supd[Pos] [Nuc] by changing Nuc
in A,G,T,C and set the value to mupd.

Step 3.4.2 Calculate the probability base value Pr[Nuc] for each Nuc in
{A,G,T,C} as follows
prb [Nuc]=exp (-KT* (mupd-supd [Pos] [Nuc] ) /mupd) ,
where T=TI/exp(DT*N) is current temperature and K is a
positive constant.

Step 3.4.3 Determine the nucleotide at position Pos of current probe
of Unit[x][y] using the probability to select Nuc as
Pr [Nuc]=prb[Nuc]l/ (prb[A]+prb [T] +prb [G]+prb[C])

Step 3.4.5 Update N=N+1, and if N<NA go to Step 3

Step 4 Update BN=BN+1 and if BN< MAX_BN go to Step 2,
else this algorithm stop.

After learning the reference sequences, target sequences to be analyzed are mapped to the map
organized by SOM. In previous reports, sequences were discretely mapped to each probe on
the map by complete matching of nucleotides between target sequences and probes associated
with the units. However, during learning of the map, reference sequences are directed to be
mapped continuously by this algorithm. Thus, the mapping method was changed from a
complete discrete match to an incomplete continuous match using the threshold used in Step
2 of the SOM algorithm.

4 Experimental results

Experiments changing the size of maps, length of probes on the map and the algorithm were
performed. As the reference sequence, we used a set of gene sequences taken from metabolic
and regulatory pathways in the KEGG database. These sequences were categorized by gene
function and species. Experiments were also performed with changed reference sequences,
according to species set, function set, speci ¢ chromosome set, etc. Here, results of analyses
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using a set of human genes are discussed to examine the performance of the proposed algo-
rithm. Human sequences used (1132 genes) had a total length of approximately 1.7 M base
pairs. Training of some 2-dimensional maps was performed by changing size (32x32, 64x64,
128x128) and changing the length of probes (6 bp-8 bp). Algorithms changing the updating
method of the map were also compared. SOM1 is a simple incremental SOM algorithm, and
SOM2 an incremental SOM algorithm with modi cation of the distance measure and update
method for continuous mapping of adjacent sequences reported at WSOM’03 [3].

BSOM1 is a simple batch SOM algorithm using hamming distances for distance measures, and
BSOM2 is a batch SOM algorithm using modi ed distance measures considering the shifts in
sequences and using simulated annealing at the update phase. Iteration number for learning
is set to 2000000 for SOM1 and SOM2, and 60 batch phases of overall sequences for BSOM1
and BSOM2. Parameters for simulated annealing were selected from some experiments and
set as K=1.0, TI=0.1, TT=0.001 and NA=200.

Figure 1 shows a trained map of 32x32 probes of 6 bases resulting from applying each algo-
rithm. On each map, similar probes are organized closely on the map. Probes organized by
SOM1 produced some regions of identical probes. In contrast, SOM2, BSOM1 and BSOM?2
did not make such regions, and SOM2 and BSOM?2 organized shifted probes closely on the
map.

GTGTGA GTATGA TTATGA AGATGA TGATGA
GTGAGA GTGAGA AGATGA AGATGA AGAAGA
GGGAGA AGGAGA AGAAGA AGAAGA CAAAGA
GGGAGA GGGAGA GGAAGA GAAAGA GAAAGA
GGCAGA GGCAGG GGAAGG GGAAGG GCAACA

Simple incremental SOM(SOM1)

ACAGTG CAGAGC TCAGCC GCGCCC TGACCA
CAGAGT CCAGAT ACCAGA GGCCAG TGGCCA
TGATTC AGAAGG GACCAG TGGCCG ATGGTC
GGCACT CAGGTG AGATGG GAGGGC TGATGG
GGGCAT ACACCT CAAAGG AAATGG ATGATG

Modified incremental SOM(SOM2)

CCTTGC TCTTCC TTGTCA TTTTCT TTGTTT
CTTTCA GTTTCA GTGTCA GTTTCT GTTTTT
CTTTGA GTTTGA GTTTGA GTTTGT GGTTGT
CTTGGA GTTGGA GGTTGA GGATGA GGATGT
GTTGGA TTTGGA GGTGGA GGATTA GGATGG

Simple batch SOM(BSOM1)

CCTTGA GCCTTG TGGAGC GAGCCT GAGAGC
AGATTG GCCAGA AGCCAG AGAACC AGAGCC
CTGATT CCAGAT TCCAGA GAGCCA AAGAGC
ATTGAT TGATAA AAAAGA AAAGAG AGTTGT
TTGATG GCCAAA CAAAAG AAGAGT GAGTTG

Batch SOM with simulated annealing(BSOM2)
Figure 1: Magni ed map

Numerical evaluation of the results, consisted of the number of distinct probes organized on
the map, number of mapped sub-sequences and number of adjacently mapped sub-sequences
on reference sequences. Covering rates of the reference sequences are shown in Table 1. For
number of distinct probes, compared with simple incremental SOM, modi ed incremental
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Table 1: Numerical evaluations of organized map

Length 6b 6b 6b 6b 7b 7b 7b 7b 8b
Map size 32x32 32x32 32x32 32x32 64x64 64x64 64x64 64x64 128x128
Algorithm SOM1 SOM2 BSOM1 BSOM2 SOM1 SOM2 BSOM1 BSOM2 BSOM2
Distinct sequences 554 1013 990 972 2163 4059 3886 4011 16448

Mapped sequences 353075 711894 633266 780758 370056 740263 675485 770312 858330
Adjacent sequences 49897 262258 36434 462852 19731 209241 36434 397134 453252
Covering rates 0.86 0.96 0.96 0.93 0.90 0.97 0.97 0.96 0.97

SOM and both batch SOM algorithms organized a larger number of probes, considering map
size and usage of the map is over 95 percent for a number of distinct probes and map size.
For number of mapped sub-sequences, the thresholds TH1 and TH2 in step 2 of the algorithm
are set as L (length of the sequence on the map) and L-1, respectively. The total length of
reference sequence is 1647806, so if all of sub-sequences on a reference sequence are mapped,
the number becomes 1647806-L. For both cases of 6 and 7 base pair probes, BSOM2 is the
best, SOM2 second, BSOM1 third and SOM1 is much worse. For the adjacent sequences,
SOM2 and BSOM2, that use a modi cation of distance measure and update method, show
apparently better results compared to SOM1 and BSOM1, which use the conventional up-
date method. BSOM2 shows much better results compared to other algorithms. Simulated
annealing works very well to direct organization of the map so as to arrange the adjacent
probes closely on the map. For covering rates, SOM2, BSOM1 and BSOM2 showed satisfying
results covering over 95 percent of reference sequences. Experiments using other sets of se-
quences show almost the same results, depending on the algorithm. Next, results of sequence
analyses using the organized map will be presented. At rst, relationship of categorized gene
sequences is shown by mapping sequences on the map. Figure 2 shows mapping results of
3 DNA sequences of genes, No. 3620 taken from amino acid metabolism, No. 4200 from
carbohydrate metabolism and No. 770 from energy metabolism on the map organized by
BSOM2. Each sequence shows a pattern of continuous dots, because BSOM2 organizes the
probes adjacent on each sequence closely on the map. Figure 3 shows mapping results for

AAM3620 CM4200 EM770

Figure 2: Mapping of gene No0.3620+4200+0770 (32x32 units))

all sequences taken from 3 metabolic pathways on the map of 32x32 units associated with 6
base pair probes. The color shows the most signi cant pathway for each probe. The leftmost

gure shows results using the map from SOM1, the second gure SOM2, third gure BSOM1
and the rightmost gure BSOM2. From these gures, each pathway shows its own continuous
region on the map. Results for SOM2 and BSOM2 are better than for SOM1 and BSOMI,
considering that the region for each pathway makes a larger region on the map.
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SOM1 SOM2 BSOM1 BSOM2

Figure 3: Mapping of amino acid metabolism(red)+carbohydrate metabolism(green)+energy
metabolism(blue)(32x32 units)

5 Conclusions

An SOM algorithm using simulated annealing in the batch update phase for sequence analysis
was introduced. This group ' s SOM algorithm can select a small set of sequences of speci ¢
length that represent characteristic features of the total DNA sequence. Furthermore, some
modi cations of the algorithm were made and the method of updating was changed to a
batch method. Simulated annealing improves the layout of sequences on the map, organizing
adjacent sequences closely on the map, with numerical evaluations and the resulting maps
demonstrating the advantages of this algorithm.

An algorithm which can layout more adjacent sequences closely on the map for longer con-
tinuous sequences will be important for further development of this model. Using simulated
annealing only in the batch update phase, it may be possible to improve performance if it is
introduced in the batch learning phase. For this purpose, this group is continuing to develop
a system for DNA analysis based on self-organizing maps, with a friendly Graphical User
Interface (GUI) that is easy to use for biologists.
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