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Abstract - Learning vector quantization (LVQ) constitutes a powerful and simple method
for adaptive nearest prototype classification which has been introduced based on heuristics.
Recently, a mathematical foundation by means of a cost function has been proposed which,
as a limit case, yields a learning rule very similar to classical LVQ2.1 and also motivates
a modification thereof which shows better stability. However, the exact dynamics as well as
the generalization ability of the LVQ algorithms have not been investigated so far in gen-
eral. Using concepts from statistical physics and the theory of on-line learning, we present a
rigorous mathematical investigation of the dynamics of LVQ type classifiers in a prototypical
scenario. Interestingly, one can observe significant differences of the algorithmic stability and
generalization ability and quite unexpected behavior for these only slightly different variants
of LVQ.
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1 Introduction

Due to its simplicity, flexibility, and efficiency, Learning Vector Quantization (LVQ) as intro-
duced by Kohonen has been widely used in a variety of areas, including real time applications
like speech recognition [15, 13, 14]. Several modifications of the basic LVQ have been pro-
posed which aim at a larger flexibility, faster convergence, more flexible metrics, or better
adaptation to Bayesian decision boundaries, etc. [5, 11, 13]. Thereby, most learning schemes
including the basic LVQ have been proposed on heuristic grounds and their dynamics is not
clear. In particular, there exist powerful extensions like LVQ2.1 which require the intro-
duction of additional heuristics, the so-called window rule for stability, which are not well
understood. A rigorous mathematical analysis of statistical learning algorithms is possible in
some cases and might yield quite unexpected results as demonstrated in [3, 7].
Recently, a few approaches relate LVQ-type learning schemes to exact mathematical concepts
and thus open the way towards a solid mathematical justification for the success of LVQ as well
as exact means to design stable algorithms with good generalization ability. The directions
are mainly twofold: on the one hand, the proposal of cost functions which, possibly as a limit
case, lead to LVQ-type gradient schemes such as the approaches in [11, 19, 20], thereby, the
nature of the cost function has consequences on the stability of the algorithm as pointed out
in [18, 20]; on the other hand, the derivation of generalization bounds of the algorithms, as
obtained in [4, 10] using statistical learning theory. Interestingly, the cost function of some



WSOM 2005, Paris

extensions of LVQ includes a term which measures the structural risk thus aiming at margin
maximization during training similar to support vector machines [10]. However, the analysis
is limited to the considered cost function or the usual (crisp) nearest prototype classification
is covered only as a limit case if statistical models are used.
In this work we introduce a theoretical framework in which we analyze and compare different
LVQ algorithms extending first results presented in [2]. The dynamics of training is studied
along the successful theory of on-line learning [1, 6, 17], considering learning from a sequence
of uncorrelated, random training data generated according to a model distribution unknown
to the training scheme and the limit N → ∞, N being the data dimensionality. In this limit,
the system dynamics can be described by coupled ordinary differential equations in terms of
characteristic quantities, the solutions of which provide insight into the learning dynamics.
This formalism is used to investigate learning rules which are similar to the very successful
LVQ2.1, including the original LVQ1 as well as a recent modification [20].

2 The data model

We study a simple though relevant model situation with two prototypes and two classes. Note
that this situation captures important aspects at the decision boundary between receptive
fields, thus it provides insight into the dynamics and generalization ability of interesting areas
when learning a more complex data set. We denote the prototypes as ~ws ∈ R

N , s ∈ {+1,−1}.
An input data vector ~ξ ∈ R

N is classified as class s iff d(~ξ, ~ws) < d(~ξ, ~w−s), where d is some
distance measure (typically Euclidean). At every time step µ, the learning process for the

prototype vectors makes use of a labeled training example (~ξµ, σµ) where σµ ∈ {+1,−1} is

the class of the observed training data ~ξµ.
We restrict our analysis to random input training data which are independently distributed
according to a bimodal distribution P (~ξ) =

∑

σ=±1 pσP (~ξ|σ). pσ is the prior probability of

the class σ, p1 + p−1 = 1. In our study we choose the class conditional distribution P (~ξ|σ)

as normal distribution with mean vector λ ~Bσ and independent components with variance vσ.
Without loss of generality we consider orthonormal class centre vectors, i.e. ~Bl · ~Bm = δl,m,
where δ.,. is the Kronecker delta. Hence the parameter λ controls the separation of the class

centres. 〈.〉 denotes the average over P (~ξ) and 〈.〉σ denotes the conditional averages over

P (~ξ|σ), hence 〈.〉 =
∑

σ=±1 pσ〈.〉σ. The mathematical treatment presented in the study is

based on the thermodynamic limit N → ∞. Note for instance that 〈~ξ ·~ξ〉 ≈ N(p1v1 +p−1v−1)

because 〈~ξ2〉σ ≈ Nvσ holds for N � λ.
In high dimensions the Gaussians overlap significantly. The cluster structure of the data

becomes apparent when projected into the plane spanned by
{

~B1, ~B−1

}

, and projections in

a randomly chosen two-dimensional subspace overlap completely. In an attempt to learn the
classification scheme, the relevant directions ~B±1 ∈ R

N have to be identified. Obviously this
task becomes highly non-trivial for large N . Hence, though the model is a simple one, it is
interesting from the practical point of view.

3 LVQ algorithms

We consider the following generic structure of LVQ algorithms:

~wl
µ = ~wl

µ−1 +
η

N
f({ ~wl

µ−1}, ~ξµ, σµ)(~ξµ − ~wl
µ−1), l ∈ ±1, µ = 1, 2 . . . (1)
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where η is the so called learning rate. The specific form of fl = f({ ~wl
µ−1}, ~ξµ, σµ) is deter-

mined by the algorithm. In the following dµ
l = (~ξµ− ~wµ−1

l )2 is the squared Euclidean distance
between the prototype and the new training data. We consider the following forms of fl:

LVQ2.1: fl = (lσµ) [12]. In our model with two prototypes, LVQ2.1 updates both of them
at each learning step according to the class of the training data. A prototype is moved closer
to (away from) the data-point if the label of the data is the same as (different from) the label
of the prototype. As pointed out in [20], this learning rule can be seen as a limit case of
a maximization of the log-likelihood ratio of the correct and wrong class distribution which
are both described by Gaussian mixtures. Because the ratio is not bounded from above,
divergence can occur. Adaptation is often restricted to a window around the decision border
to prevent this behavior.

LFM: fl = (lσµ)Θ
(

dµ
−σµ − dµ

σµ

)

, where Θ is the Heaviside function. This is the crisp version
of robust soft learning vector quantization (RSLVQ) proposed in [20]. In the model consid-
ered here, the prototypes are adapted only according to misclassified data, hence the name
learning from mistakes (LFM) is used for this prescription. RSLVQ results from an optimiza-
tion of a cost function which considers the ratio of the class distribution and unlabeled data
distribution. Since this ratio is bounded, stability can be expected.

LVQ1: fl = lσµΘ
(

dµ
−l − dµ

l

)

. This is Kohonen’s original LVQ1 algorithm. At each learning
step the prototype which is closest to the data-point, i.e the winner is updated [12].

4 Dynamics of learning

We assume that learning is driven by statistically independent training examples such that
the process is Markovian. For not too complicated underlying data distribution, the system
dynamics can be analyzed using only few order parameters, {Rlm = ~wl · ~Bm, Qlm = ~wl · ~wm}.
In the thermodynamic limit, these order parameters become self-averaging [16], i.e. the
fluctuations about their mean-values can be neglected as N → ∞. This property facilitates
an analysis of the stochastic evolution of the prototype vectors in terms of a deterministic
system of differential equations, which greatly helps to build a theoretical understanding of
such systems. One can get the following recurrence relations from (1) [9]:

Rµ
l,m − Rµ−1

l,m =
η

N

(

bµ
m − Rµ−1

lm

)

fl (2)

Qµ
l,m − Qµ−1

l,m =
η

N

(

(hµ
l − Qµ−1

lm )fm + (hµ
m − Qµ−1

lm )fl + ηfl × fm

)

(3)

where hµ
l = ~wµ−1

l · ~ξµ, bµ
m = ~Bm · ~ξµ, Rµ

l,m = ~wµ
l · ~Bm, Qµ

l,m = ~wµ
l · ~wµ

m. As the analysis is done

for very large N , terms of O(1/N2) are neglected in (3). Define t ≡ µ
N

. For N → ∞, t can be
conceived as a continuous time variable and the order parameters Rl,m and Ql,m as functions
of t become self-averaging with respect to the random sequence of input training data. An
average is performed over the disorder introduced by the randomness in the training data
and (2) and (3) become a coupled system of differential equations [9]:

dRl,m

dt
= η

(

〈bmfl〉 − 〈fl〉Rlm

)

(4)

dQl,m

dt
= η

(

〈hlfm〉 − 〈fm〉Qlm + 〈hmfl〉 − 〈fl〉Qlm + η
∑

σ=±1

vσpσ〈fl × fm〉σ
)

(5)
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Figure 1: (a: left frame) Convergence of Monte Carlo results to the theoretical prediction
for N → ∞. The open ring at 1

N
= 0 marks the theoretical result for R1,1 at t = 10; stars

correspond to Monte Carlo results on average over 100 independent runs. (b: middle frame)
Self averaging property: the variance of R1,1 at t = 10 vanishes with increasing N in Monte
Carlo simulations. (c: right frame) Dependence of the generalization error for t → ∞ for
LVQ1 ( with parameter values: λ = v1 = v−1 = 1, p1 = 0.5) on the learning rate η.

In [9] we show in detail how the averages in (4) and (5) can be computed in terms of an
integration over the density p

(

~x = (h1, h−1, b1, b−1)
)

. The Central Limit theorem yields that,
in the limit N → ∞, ~x ∼ N(Cσ, µσ) (for class σ) where µσ and Cσ are the mean vector

and covariance matrix of ~x respectively, cf. [9]. Since this holds for any well behaved p(~ξ),

the above mentioned explicit Gaussian assumption of the conditional densities of ~ξ is not
necessary for the analysis.

Given the initial conditions {Rl,m(0), Ql,m(0)}, the above mentioned system of coupled ordi-
nary differential equations can be integrated either numerically or analytically. This yields the
evolution of the order parameters with increasing t in the course of training. The properties of
these learning curves depend on the characteristics of the data {λ, ~Bl · ~Bm}, the learning rate
η, and the choice of the specific algorithm i.e. the form of fl. The detailed derivation of the
system of differential equations for each of the above mentioned LVQ algorithms is presented
in [9]. In our analysis we use Rl,m(0) = Q1,−1(0) = 0, Q1,1(0) = 0.01, Q−1,−1(0) = 0.02 as
the initial conditions for the system of differential equations. For large N , the Central Limit
theorem can also be exploited to obtain the generalization error εg of a given configuration as

a function of the order parameters as follows: εg =
∑

σ=±1 pσΦ[
Qσ,σ−Q

−σ,−σ−2λ(Rσ,σ−R
−σ,σ)

2
√

vσ

√
Qσ,σ−2Qσ,−σ+Q

−σ,−σ

],

where Φ(x) =
∫ x

−∞ e−
z
2

2 , c.f. [9]. Hence the evolution of Rl,m and Ql,m with the rescaled
number of examples t provides us with the learning curve εg(t) as well. In order to verify
the correctness of the aforementioned theoretical framework, we compare the solutions of the
system of differential equations with the Monte Carlo simulation results and find excellent
agreement already for N ≥ 100 in the simulations. Fig. 1 (a) and (b) show how the aver-
age result in simulations approaches the theoretical prediction and how the corresponding
variance vanishes with increasing N .

For stochastic gradient descent procedures like VQ, the expectation value of the associated
cost function is minimized in the simultaneous limits of η → 0 and many examples, t̃ = ηt →
∞. In the absence of a cost function we can still consider the above limit, in which the system
of ODE simplifies and can be expressed in the rescaled t̃ after neglecting terms ∝ η2. A fixed
point analysis then yields a well defined asymptotic configuration, c.f. [8]. The dependence
of the asymptotic εg on the choice of learning rate is illustrated for LVQ1 in Fig. 1(c).
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Figure 2: (a: left frame) Evolution of the generalization error for different LVQ algorithms.
(b: middle frame) Diverging order parameter in LVQ2.1. (c: right frame) Modality of gener-
alization error with respect to t in the case of LVQ2.1.

5 Results - Performance of the LVQ algorithms

In Fig. 2(a) we illustrate the evolution of the generalization error in the course of training.
Qualitatively all the algorithms show a similar evolution of the the generalization error along
the training process. The performance of the algorithms is evaluated in terms of stability and
generalization error. To quantify the generalization ability of the algorithms we define the

following performance measure: PM =
√

∫ 1
p1=0(εg,p1,lvq − εg,p1,bld)2 dp1

/
√

∫ 1
p1=0 ε2

g,p1,bld dp1

where εg,p1,lvq and εg,p1,bld are the generalization errors achieved by a given LVQ algorithm
and the best linear decision rule, respectively, for a given class prior probability p1. Unless
otherwise specified, the generalization error of an optimal linear decision rule is depicted as
a dotted line in the figures.

In Fig. 2(b) we illustrate the divergent nature of LVQ2.1. If the prior probabilities are
skewed the prototype corresponding to the class with lower probability diverges during the
learning process and yields a trivial classification with εg,p1,lvq2.1 = min(p1, p−1). Note that
in the singular case when p1 = p−1 the behavior of the differential equations differ from the

generic case and LVQ2.1 yields prototypes which are symmetric about λ(B1+B
−1)

2 . Hence the
performance is optimal in the equal prior case. In high dimensions, this divergent behavior
can also be observed if a window rule of the original formulation [20] is used [9], thus this
heuristic does not prevent the instability of the algorithm. Alternative modifications will be
the subject of further work. As the most important objective of a classification algorithm
is to achieve minimal generalization error, one way to deal with this divergent behavior of
LVQ2.1 is to stop at a point when the generalization error is minimal, e.g. as measured
on a validation set. In Fig. 2(c) we see that the generalization error has a modality with
respect to t, hence an optimal stopping point exists. In Fig. 3 we illustrate the performance
of LVQ2.1. Fig. 3(a) shows the poor asymptotic behavior. Only for equal priors it achieves
optimal performance. However, as depicted in Fig. 3(b), an idealized early stopping method
as described above indeed gives near optimal behavior for the equal class variance case.
However, the performance is worse when we deal with unequal class variances (Fig. 3(c)).

Fig. 4(a) shows the convergent behavior of LVQ1. As depicted in Fig. 4(b), LVQ1 gives a near
optimal performance for equal class variances. For unequal class variance, the performance
degrades, but it is still comparable with the performance of the best linear decision surface.

The dynamics of the LFM algorithm is shown in Fig. 5(a). We see that its performance is
far from optimal in both equal (Fig. 5(b)) and unequal class variance (5(c)) cases. Hence,
though LFM converges to a stable configuration of the prototypes, it fails to give a near
optimal performance in terms of the generalization error. Note that we consider only the crisp
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Figure 3: Performance of LVQ2.1: (a: left frame) Asymptotic behavior for v1 = v−1 = λ = 1,
note that for p1 = 0.5 the performance is optimal, in all other cases εg = min(p1, p−1). (b:
middle frame) LVQ2.1 with stopping criterion when v1 = v−1 = λ = 1, (c: right frame)
LVQ2.1 with stopping criterion when λ = 1, v1 = 0.25, v−1 = 0.81. The performance measure
PM as given here and in the following figures is defined in Section 5.
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Figure 4: Performance of LVQ1: (a: left frame) Dynamics of the order parameters. (b:
middle frame) Generalization with equal variance (v1 = v−1 = λ = 1). (c: right frame)
Generalization with unequal variance (λ = 1, v1 = 0.25, v−1 = 0.81).

LFM procedure here. It is very well possible that soft realizations of RSLVQ as discussed in
[19, 20] yield significantly better performance.

To facilitate a better understanding, we compare the performance of the algorithms in Fig. 6.
In the first part, we see that LVQ1 outperforms the other algorithms for equal class variance,
and it is closely followed by LVQ2.1 with early stopping. However the supremacy of LVQ1 is
partly lost in the case of unequal class variance (see Fig. 6(b)) where an interval for p1 exists
for which the performance of LVQ2.1 with stopping criterion is better than LVQ1.
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Figure 5: Performance of LFM: (a: left frame) Convergence. (b: middle frame) Generalization
with equal variance (v1 = v−1 = λ = 1) (c: right frame) Generalization with unequal variance
(λ = 1, v1 = 0.25, v−1 = 0.81).
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Figure 6: Comparison of performances of the algorithms: (a: left frame) equal class variance
(v1 = v−1 = λ = 1), (b: right frame) unequal class variance (λ = 1, v1 = 0.25, v−1 = 0.81).

6 Conclusions

We have investigated different variants of LVQ algorithms in an exact mathematical way by
means of the theory of on-line learning. For N → ∞, the system dynamics can be described
by a few characteristic quantities, and the generalization ability can be evaluated also for
heuristic settings where a global cost function is lacking, like for standard LVQ1, or where a
cost function has only been proposed for a soft version like for LVQ2.1 and LFM.
The behavior of LVQ2.1 is unstable and modifications such as a stopping rule become neces-
sary. Surprisingly, fundamentally different limiting solutions are observed for the algorithms
LVQ1, LVQ2.1, LFM, although their learning rules are quite similar. The generalization
ability of the algorithms differs in particular for unbalanced class distributions. Even more
convolved properties are revealed when the class variances differ. It is remarkable that the
basic LVQ1 shows near optimal generalization error for all choices of the prior distribution
in the equal class variance case. The LVQ2.1 algorithm with stopping criterion also performs
close to optimal in the equal class variance. In the unequal class variance case LVQ2.1 with
stopping criterion even outperforms the other algorithms for a range of p1.
The theoretical framework proposed in this article will be used to study further characteristics
of the dynamics such as fixed points, asymptotic positioning of the prototypes etc. The main
goal of the research presented in this article is to provide a deterministic description of
the stochastic evolution of the learning process in an exact mathematical way for interesting
learning rules and in relevant (though simple) situations, which will be helpful in constructing
efficient (in Bayesian sense) LVQ algorithms.
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