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The self-organizing map (SOM) is well known in many statistical applications ranging from 
clustering to data mining. However, the SOM is also an extremely useful methodology in time 
series modeling and system’s control. Because these application domains are perhaps less well 
known, this talk will summarize SOM based designs being pursued in the Computational 
NeuroEngineering Laboratory for both signal processing applications and controls. 
 
The first question to be addressed is how to cope with time, since the original SOM is static, i.e. it 
adapts the weights with the present data sample. The problem of time varying inputs can be 
addressed using the delay embedding theorem [1], which states that it is always possible to create a 
one-to-one mapping with a unique inverse between the original time series and a multidimensional 
space of sufficiently large dimension (d > 2L+1, where L is the dimension of the original 
deterministic system that produced the time series). Even in the case of noise contamination, this is 
approximately correct if filtered embeddings are utilized. With this result, it is possible to self-
organize SOMs in signal (or state) space. Once this is done from a training set, time series 
modeling and system controls can be tremendously simplified from the trained SOM, due to its 
clustering properties. For this reason, we should think of the SOM as a representation infrastructure 
for signal processing and control.  
 
One of the fundamental properties of the SOM that has been exploited in our work is the 
neighborhood preservation property.  Indeed neighborhood preservation allows local linear 
modeling, which is the key modeling infrastructure that we have exploited [2]. The idea is very 
simple. Complex nonlinear mappings, if smooth, can always be locally approximated by linear 
models in a sufficiently small region around the present operating point. The practical difficulties 
that the designer must solve are (1) how to select the neighborhood that is relevant, (2) how to 
derive the parameters of the linear models, (3) how to avoid discontinuities between the models. 
The SOM enables very elegant answers to all these 3 questions, as we will present during the talk. 
Indeed, the winner take all operation of the SOM provides immediately the location in state space 
that is relevant. If one associates a linear model to each of the SOM processing elements (PEs), the 
selection of the linear model is also done easily. As for the training, the weights of the SOM PE and 
its neighbors can be thought as an approximation to the data in the neighborhood, and by simple 
weighted least squares with the desired response we can train the optimal weights. Finally, since 
the SOM preserves neighborhoods, the local linear model coefficients vary smoothly, and so 
switching transients are avoided.  
 
Deriving controllers from local linear models is also rather simple, in particular with winner take 
all PEs [3]. Indeed, under the inverse model control framework, from each local linear model, a 
corresponding local linear controller is easily derived by inversion, for a high performance, robust, 
and easy to implement model based control methodology. We will be presenting results from the 
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control of a NASA UAV (unmanned aerial vehicle) we are working on, comparing the SOM results 
with alternative methodologies. One of the difficulties of the SOM based approach is the poor 
scaling up of the technique to large input spaces. 
 
Another application of the SOM that will be discussed is an infrastructure for the estimation of 
distances in probability spaces. Indeed, clustering is a form of density estimation, and as such it 
may contain the building blocks to estimate distances between probability density functions. Once 
again, the idea is to train the SOM for the application and work in the SOM space as a low 
dimensional projection of the input data space, which preserves neighborhoods. The Kulback-
Leibler divergence is perhaps the best well known “distance” measure in probability spaces, but it 
is very hard to estimate nonparametrically (i.e. directly from data). An alternative distance 
proposed by Diks [4] and independently also by us [5] is able to approximate the KL divergence. 
Recently, we have utilized a SOM to perform this estimation with very interesting results. 
Basically, the method trains a SOM and builds an histogram of the fired PEs. The comparison of 
the SOM’s histogram during training with the histogram of the same SOM applied to unknown 
data is able to estimate very accurately the differences between the data distributions. In a sense 
this method extends the concept of the matched filter to much larger signal segments, and can be 
considered a nonparametric similarity index in probability spaces.    
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