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Abstract – Kernel methods have been widely applied to various learning models to extend their 
nonlinear approximation abilities. Such extensions have also recently occurred to the Self-
Organising Map (SOM). In this paper, two recent kernel SOMs are reviewed and it is shown 
that the kernel SOMs can be formally derived from an energy function of the SOM in the 
feature space. Various kernel functions are readily applicable to the kernel SOM, while their 
performance and choices of kernel parameters depend on the problem. This paper shows that 
with an isotropic and density-type kernel function, the kernel SOM is equivalent to a 
homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. It also 
explains that the SOM approximates naturally a kernel method. 
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1   Introduction 
 
The Self-Organising Map (SOM) [10] is one of the most popular and widely applied neural 
network models owing to its several distinct features over other neural networks such as 
nonlinear mapping of input to output space and topological preserving. The SOM has been 
studied, applied and extended extensively in the last couple of decades and many insights have 
been gained since its introduction [10]. However numerous new developments and applications 
are continuing to emerge [2, 3, 9].  

Kernel methods have received a great deal of attention in the past few years, especially 
in the supervised learning community [16]. By applying kernel function to the input space, a 
nonlinear, complex problem can become linear in the high dimensional feature space [1]. 
Typical examples are the Support Vector Machines [5]. Kernel methods have also been applied 
to unsupervised learning models such as principal component analysis [15], principal factor 
analysis, projection pursuit and canonical correlation analysis [6]. Two kernel variants of the 
SOM have been proposed recently. MacDonald and Fyfe [13] derived a kernel SOM from 
kernelising the k-means clustering algorithm with added neighbourhood. Andras [4] and Pan, 
Chen and Zhang [14] have proposed a kernel SOM by transforming the input space to a feature 
space using nonlinear kernel functions.  

The objectives of these kernel SOMs are different from some earlier approaches [7] 
and [17, 18], which aim at optimising the topographic mapping and approximating data 
distribution respectively. In [7], Graepel, Burger and Obermayer apply kernel functions to 
transform the input to high dimensional space, thus transforming the distance metric to 
nonlinear and adding more flexibility in vector-quantising and capturing the data structures. In 
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van Hulle [17] and Yin and Allinson [18], neurons in the SOM are treated as Gaussian (or 
other) kernels, the resulting map approximates a mixture of Gaussian (or other) distribution of 
the data. It further establishes a link between the mixture model and the self-organisation 
process [18].  

In Section 2 two recent kernel SOMs are reviewed and it is further shown that one of 
them can be derived from an energy function [11, 8]. Furthermore, we show that the kernel 
self-organisation can be performed in the transformed space completely. The proposed method 
unifies the kernel approaches to the SOM. In Section 3, a direct relationship between the kernel 
SOM and an earlier Self-Organising Mixture Network (SOMN) [18] is revealed. The relation 
further explains that the kernel SOM is an underlying mixture model and that the SOM is 
already an approximate of a kernel method. Conclusions are given in Section 4. 
 
2   Kernel Self-Organising Maps 
 
A kernel is a function κ : X×X ∈Ρ, where X is the input space. This function is a dot product of 
mapping function φ(x), i.e. )(),();( yxyx φφκ = , where φ :X → F , F is a high dimensional inner 
product feature space.  
 
Type I Kernel SOM 
 
Following the kernel PCA [15], a k-means based kernel SOM (type I) has been proposed by 
MacDonald et. al. [13]. Each data point x is mapped to the feature space via φ(x). Each mean can 
be described as a weighted sum of the mapping functions, ∑=

n
nnii )(, xm φγ . The algorithm then 

selects a mean or assigns the data with the minimum distance between the mapped point and the 
mean,  
 

∑∑∑ +−=−=−
mn

mnnm
n

nni
n

nnii
,

,,
2

,
2 ),(),(2)(||)()(||||)(|| xxxxxx,xxmx κγκγκφγφφ          (1) 

 The update of the mean is based on a soft learning algorithm, 
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where ζ is the normalised winning frequency of the i-th mean. The above updating formula can be 
expressed in kernel function form as, 
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Type II Kernel SOM 
 
There is another, direct way to kernelise the SOM by mapping the data point to the feature space 
then applying the SOM in the mapped space. The winning rules of this second type of kernel SOM 
have been proposed as follows either in the input space [14], 
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or in the feature space [4]: 
||)()(||minarg ii

v mx φφ −=                                                         (5) 

 The weight updating rule is proposed as [4, 14], 

),()),(()()()1( iii Jivhttt mxxmm ∇+=+ α                                                   (6) 

where 2||)()(||),( iiJ mxmx φφ −=  is the distance function in the feature space or the proposed 
objective function. While, )(tα  and )),(( ivh x  are the learning rate and neighbourhood function 
respectively.  
 Note that,  
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Therefore this kernel SOM can be entirely operated in the feature space. 
 
Link to Energy Function 
 
From the energy function point of view, the SOM minimises the following energy [11, 8], at least 
for the discrete case,  
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where Vi is the Voronoi tesselation of the neuron i. 
The extension of this energy function in the feature space is, 
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The kernel SOM can be seen as a result of direct minimising this transformed energy stochastically, 
i.e., using the sample gradient,  
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This leads to the weight updating rule Eq. (6). 
 Various kernel functions such as Gaussian, Cauchy, logarithm, polynomial, are readily 
applicable to the kernel SOM [12]. For example, for Gaussian kernel, the winning and weight 
updating rules are, 
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respectively. 
Experimental results on various benchmark datasets have shown that although kernel SOM 

does produce better classification performance when the kernel parameters are optimised (often 



WSOM 2005, Paris 

empirically) in some cases and there is short of evidence to indicate that the kernel SOM will 
always outperform the SOM [12]. A typical set of results is given in Table 1. 
 

Table 1: Classification errors on UCI colon cancer dataset. M, A and V denote the minimum 
distance, average distance and majority voting methods to label the nodes [12]. 

 
Kernel SOM Type I Kernel SOM Type II Kernel SOM 

 M A V M A V M A V 
Gaussian 4.3 7.0 3.8 5.6 5.8 5.6 5.3 5.3 4.7 
Cauchy 3.8 7.5 3.7 5.5 5.6 5.5 5.5 5.5 4.8 

Log 4.4 7.2 4.1 4.6 4.6 4.6 5.2 5.2 4.6 
 
 
3   Self-Organising Mixture Network 
 
The self-organising mixture network (SOMN) [18] extends and adapts the SOM to a mixture 
density model, in which each node characterises a conditional probability distribution. The joint-
probability density of the data (or the network) is described by a mixture distribution,  
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where )|( iip θx  is the i-th component-conditional density, and θi is the parameter for the i-th 
conditional density, i=1, 2, ... K, T

K ),...,( 21 θθθ=Θ , and Pi is the prior probability of the i-th 
component or node and is also called the mixing weights. For example, a Gaussian or Cauchy 
mixture has the following the conditional densities respectively, 

)]()(
2
1exp[

||)2(
1)|( 1

2/12/ ii
T

i
i

diip mxmxx −Σ−−
Σ

= −

π
θ                           (15) 

)]()(1[||
1)|( 12/1

ii
T

ii
iip

mxmx
x

−Σ−+Σ
=

−π
θ                                           (16) 

where },{ iii Σ= mθ  are the mean vector and covariance matrix respectively. 
 

Suppose that the true environmental data density function and the estimated one are p(x) 
and )(ˆ xp  respectively. The Kullback-Leibler information metric measures the divergence between 
these two, and is defined as: 

xx
x
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 When the estimated density is modelled as a mixture distribution, i.e. a function of various 
sub-densities and their parameters, one can seek the optimal estimate of these parameters by 
minimising the Kullback-Leibler metric via its partial differentials in respect to every model 
parameter, i.e. 
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 As the true data density is unknown, the stochastic gradient was used for solving these non-
directly solvable equations. This results in the following adaptive updating rules for the parameters 
and priors [18], 
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where α(t) is the learning coefficient or rate at time step t, and 0<α(t)<1 and decreases 
monotonically. The neighbourhood function h(v(x), i) is further introduced to restrict the learning 
in a neighbourhood of the winner, which is found via maximum (estimated) posterior probability of 
the node,  
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 When the SOMN is limited to the homoscedastic case, i.e. equal variances and equal priors 
(or non-informative priors) for all components, only the means are the learning variables. The 
above winner rule becomes, 
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Eq. (22) is equivalent to rule Eq. (5) or (7), when the density function is isotopic or a function of 
|||x-m||. 
 The corresponding weight updating is, 
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It can be seen that Eq. (23) bears similarity to Eq. (6). Again if the conditional density function is 
of a kernel type and isotopic or vice versa (e.g. Gaussian and Cauchy functions), the above rule 
leads to the same result as Eq. (6), with an additional normalising factor )()|(ˆ xx pp

j ji =∑ θ . 

When the data density is relatively smooth, this factor is only a (same) scalar value to all nodes.  
 For example, for a Gaussian mixture with equal variance and prior for all nodes, it is easy 
to show that the winning and mean updating rules are, 
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They are equivalent to those of the kernel SOM with Gaussian kernels, i.e., Eqs.(12) and (13). 
 The equivalence between the SOMN and kernel SOM on one hand explains that the kernel 
SOM is approximating a mixture density model using the kernel function as the prototype 
conditional density. On the other hand, as the SOM is a special case of the SOMN with equal 
variance and prior for all nodes and when the number of nodes is great, the SOM is natural kernel 
method.  
 
4   Conclusions and Discussions 
 
In this paper, the relation between kernel SOM and self-organising mixture network (SOMN) 
has been established. When the conditional density function is of a kernel type or the kernel 
function is of density type, and both are isotopic function, then two methods are equivalent. 
Then the kernel SOM can be understood as an entropy optimised mixture density learner. As 
the SOM is a special case of SOMN, this in turn explains that the SOM approximates the 
kernel method naturally.  
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