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Abstract - This article presents a new way of dealing with the self-organizing map methods
to visualize by an original way qualitative data or histogram vectors as we can find on the
Internet e.g. after the pre-processing of plain text documents. The main difference with
other known methods is the nature of the processed matrix: a contingency table. By adding
constraints during the learning of a mixture of a discrete distribution which models the noise
in classes of documents or rows, we obtain a self-organizing map algorithm named CASOM.
We explain the properties of the model: metrics, criteria, links with Correspondence Analysis
and mean biplot which help to better interpret results. A more general projection available
for self-organizing maps in the dual Euclidian space or columns is also introduced. Then, we
present some experiments on a corpus of textual short summaries to illustrate the behavior of
the algorithm and to show its interest. The conclusion discusses alternative models and gives
perspectives of the contribution.

Key words - Self-Organizing Map, Expectation-Maximization, Correspondence

Analysis, Biplot, Textual data analysis

1 Introduction

Self-organizing maps methods were created by Kohonen in the early 1980’s. Roughly speak-
ing, Kohonen maps seek to approximate discretized surfaces to model correlation statistics
and summarize data distribution. In practice, it is a K-mean[1] algorithm whose classes are
constrained on an imaginary lattice. During the learning process, the centers of the classes
are updated as in the K-mean method. But all the centers which are near a given center on
the lattice also share the data they belong to. So, this smoothing process allows centers which
are neighbors on the lattice, to be near each other in the data space. One of the greatest
interests of the SOM method is to generalize the principal planes from the Principal Com-
ponent Analysis method[2] (PCA) in a non-linear way. Correspondence Analysis[3] (CA),
a PCA variant for dealing with contingency tables is a very efficient method to extract a
structure from an histogram data cloud. Nevertheless, it needs to evolve and to be scaled to
be suitable for the huge databases available nowadays. A few years ago, a method KPCA was
presented[4] to deal with such data. As CA is like a PCA with a χ2 metrics, Self-Organizing
Maps[5] was applied to this metrics. This method has not yet been used for textual data
and give center vectors as continuous multivariables. Here, we propose an alternative ap-
proach by modeling classes with multinomial distributions. This last law is today one of the
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best ways to classify[6] texts and can deal successfully with the very sparse textual matrices.
Therefore, it seems judicious to include it in the model. As alternative models, we can cite
the works[4, 7] which study a stochastic version of SOM with a χ2 metrics for categorical
data. This method should be adapted to construct our dual projections for SOM. Several
parametric models have also been proposed these past years as a categorical version of the
Generative Topographic Model[8]. These models are quite complex, hard to estimate for large
corpuses and to interpret. Our work uses the original decreasing vicinity of SOM during the
learning phase. Another work[9] projects the original Probabilistic Latent Semantic Model
in the same way, needing more variables to be estimated. Other methods to project data
on a plane exist like the classical Multidimensional Scaling (MDS), e.g. Sammon’s maps[10],
known for its difficulty to be estimated and for the sometimes confusing interpretation of the
proximities on the resulting map.
In the following, first we describe the CASOM model that we propose and gives some jus-
tifications. Then a biplot method is presented and extented towards a dual projection for
SOM methods. Then we report the experimental results performed and finally we draw our
conclusions. We will mainly analyze textual data as abstracts from scientific articles available
on-line. We call document (or text) a histogram data vector and term (or word) the compo-
nent of a textual vector. In a formal way, let us suppose we have a corpus of I documents

D = {di}i=Ii=1 where di represents the ith document ′′mi1mi2 · · ·mi
|
di|
′′, the mij are the words

of the ith document. From that corpus, a vocabulary of J terms V = {mj}
j=J
j=1 is extracted.

In practice, we select V by calculating the total frequency of each term and keeping the first
J terms because of the Zip law[11]. The document matrix is built counting the occurrences
of each word from V. Let us have Nij = # {mit = mj , t ∈ [1; |di|]}, di = (Ni1, Ni2, · · · , NiJ)T ,
and Ni• =

∑

j Nij , N•j =
∑

iNij , N•• =
∑

i

∑

j Nij . The contingency table is built with the
di as lines, and mj as columns.

2 CASOM: Generalized Correspondence Analysis

Our algorithm is based on the Topology Preserving Expectation-Maximization or TPEM from
[12] which modifies the Classifying EM[13] (CEM) algorithm. This one is a clustering version
of the Expectation-Maximization[14] (EM) algorithm where EM is an algorithm to calculate
the local maximum of likelihood with latent random variables. Therefore, it is a SOM-like
map built with explicit Gaussian distribution for the classes. The counting vectors di are now
supposed to be i.i.d. realizations of discrete multidimensional random variables following a
multinomial law. The algorithm is a clustering process using a mixture of discrete laws with
a fuzzification µik of the original binary variables cik which is one if di is in class k and zero
else, like in a SOM algorithm. During the learning process, the vicinity is reduced to zero
when there is no more neighborhood. TPEM is justified by its authors because the CEM
of identical isotropic Gaussian laws is equivalent to a K-mean procedure. The Gaussian
class distribution can also be argued by the asymptotic properties[15] of the SOM. Since
our current model is different, we seek the underlying metrics and discuss some statistical
properties of the algorithm. Here θ is the parameter vector merging all unknown variables
Pj|k (multinomial parameter component), Pk (mixing component), and µik. So, the algorithm
is a likelihood maximization of a mixture of multinomial distributions by an EM process with
a forced fuzzification of the a posteriori probabilities before the maximization step. It enables
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lateral links between close centers in the lattice. In practice, the batch algorithm encounters
what is called a dead unit (class center) when no document is assigned to the corresponding
class. Besides, as smoothing decreases, µik is binary or almost binary, so that P•|k cannot
be estimated because the class is empty. In that case, we do not update its value any
longer. Thus, we obtain our CASOM algorithm of self-organizing map. Distribution values
are initialized with random values or in a more suitable way, with already organized centers
as a grid from some linear factorial method. Generally, to display the final map, one uses
the U-matrix[16, 17] which shows the local correlation between the closest neighbor classes.
A clustering of the class centers, e.g. hierarchical clustering[18], facilitates browsing on the
map by permitting the user to focus on the main themes revealed. For the model presented,
we propose the natural criterion by analogy with SOM, replacing Euclidian distance by KL
distance, where the binary variable hkl is 1 iff ek and el are neighbor or identical:

LC(D|θ) =
∑

i

fi
∑

k

µik
∑

l

hklKL(f•|i||P•|k)

This last criterion is approximately[19] minimized by CASOM, ignoring the Bayesian smooth-
ing and near convergence when the centers are well organized. And, we have an approximate
local χ2 metrics, remembering that of Malahanobis : the distance locally adapts[19] itself to
each class center:

KL(f•|i||P̂•|k) ≈
1

2

∑

j

1

P̂j|k

(

fj|i − P̂j|k

)2

Because of the stochastic fluctuation around the mean value, it can also be shown that this last
criterion is distributed as a normal law when miniNi grows towards infinite values. Morever,
as SOM is a non-linear PCA method, the distance justifies that our model is an approximate
generalization of the CA method, as the underlying metrics is near the χ2 one. We call
the method CASOM for CA by SOM. Our method also permits a very specific visualization
of a corpus by showing rows and columns of a two-way contingency table. We use mean
projections of words and documents by showing a document di at the Euclidian coordinates
< s|di; θ̂ > and a word mj at the Euclidian coordinates < s|mj ; θ̂ > where we have:

< s|di; θ̂ > =
∑

k skP̂ (k|di) with P̂ (k|di) ∝
∏

j P̂
Nij
j|k

< s|mj ; θ̂ > =
∑

k skP̂ (k|mj)

Ĥ(mj) = −
∑

k P̂ (k|mj) log2 P̂ (k|mj)

It is clear that we must be careful with multimodal distributions showing documents and
words at spurious places. So, we choose to select from the finite vocabulary V only low
entropy Ĥ(mj) terms to limit mistakes, with P̂ (k|mj) ∝ P̂j|k (or possibly (P̂j|k)

α
with α > 1

to underline modes of the distribution). Some edges can be added between very near class
distributions, i.e. with small distances D as D(P̂ (k|�1), P̂ (k|�2)) where �l ∈ D ∪ V. This
biplot is a main difference between the original SOM and CASOM: we are able to interpret
term statistics and to make comparisons between documents, classes and terms on the same
bidimensional map. For classical SOM methods, where centers are continuous, we propose
an alternative. Knowing the fact that the K-means is equivalent to a CEM of a mixture
of gaussian law with spherical and identical variance matrices, we can write P (k|mj) ∝
exp(−ρ

∑

i(xij − cjk)
2) which, for a good ρ, and ck a center in RJ , reveals most of the

explained intra-variance.
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3 Experimental and empirical results

The projected corpus comes from the summaries of the technical home publications of INRIA
(http://www.irisa.fr/bibli/publi/), of the past 10 years. These scientific abstracts cover all
the research themes of the INRIA institute: 1) Networks and systems, 2) Software engineering
and Symbolic calculus, 3) Human-Machine Interface and 4) Simulation and optimization of
complex systems.These abstracts are in two languages, French and English. The factorial
planes of the multinomial parameters come from the French version with a vocabulary of 480
words. We project this corpus of 1,961 documents on a 12*10 knot mesh and extract a quick
view of its content. For these French summaries, we decide to stop the algorithm before near
convergence. We noticed a clear empirical link of the properties between CA and CASOM
in the Figure 1. We also project the English version of the abstracts, learning the map until
the end of the convergence. We thus obtain a well-trained map with natural clusters. Here,
for a vocabulary of 476 words, we retain only 1,955 texts. The size of the textual vectors
is near the French one. SOM-like methods index data in semantic clusters where they can
be retrieved by a user providing a query dq = (Nq1Nq2 · · ·NqJ ). A Boolean treatment is for

instance the intuitive value
∑

j:Nqj>0 P̂j|k. We are able to provide different maps to a user,
in the Figure 2 underlying various features of the data map by drawing the values as level
lines.We illustrate the browsing property of the model. This corresponds to activation maps
with level lines for the sum of probabilities of the multinomial for the queries ”knowledge” and
”interface” with the part of the subgraph around each projected word. Any other indicator
could be used instead of the probabilities. The figures show how the self-organizing map
behaves: it is activated on different zones according to the diverse themes of the corpus. For
example, the word knowledge is statistically near the word interface as is demonstrated by
the superposable curves obtained after the query ; and interface defines too an other well
separated theme as is demonstrated by its bimodal distribution. Finally, the graph of words
gives us an easy way to find the most interesting and reliable statistical correlations. This
output permits a quick study of the main hidden relations between words in V, less apparent
on the whole table in the Figure 3 unless we use a color scale for the frequencies or clustering.
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Figure 1: Factorial planes for eigenvectors (1,2) and (2,3). As we stopped before convergence, we
get a shape empirically showing the link between CA and CASOM. The values 0.39 and 0.29 are the
projected inertia of the corresponding factorial planes. Each knot of the mesh is the class number k.
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Figure 2: Mean Biplot with graph of words for the two terms interface, and knowledge. As a remark,
every word is written here followed by its total frequency in the corpus. It is shown on the drawings
only the restricted graphs of words around the chosen term.
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Figure 3: Table of the multinomial centers for the English summaries : the terms corresponding to
the components with the highest probabilities are shown to caracterize associated classes. It appears
that close centers often represent similar themes. We can retrieve here the less apparent two areas
where the terms interface, and knowledge were shown to be the most frequent previously.
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4 Conclusion

Our work gives new ideas to deal with self-organizing maps. First, we have presented a
new self-organizing map method which has strong links with Correspondence Analysis; as
CA is intensively used in textual data analysis, our model is an ideal method to scale CA
for large textual datasets where matrices are very sparse with the KL distance known to be
competitive, and numerically more efficient than the χ2 one because zero values are cancelled.
We have presented some remarkable properties and the first biplot with a SOM algorithm.
Second, new ways to evaluate the quality of the final map have also been briefly given,
by visual display or by more quantitative methods. To our knowledge, the parallel between
multinomial probability vectors and a discrete bivariate law is an original idea in this domain.
Finally, the model is illustrated for KD and IR, providing intuitive indicators. Our paper
gives new perspectives for self-organizing map methods in the categorical data analysis field.
Biplot is a powerful feature which is lacking in most of the currently developed methods. For
instance Multidimensional Scaling could be used to make such a biplot, though inevitably
losing the understanding of the projections obtained. Our approach gives tools to have an
indepth look at a dataset and also to help as a complementary tool to retrieve data by
answering a query. Finally, scaling CASOM to bigger datasets is hopefully possible thanks
to the SOM experience[20]. Roughly speaking, our maps can be constructed by any classical
SOM process on the reducted data matrix with a joint clustering of the frequencies vector or
using[21] fuzzy batch quantities to construct multinomial vectors.
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