Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images

Jakob Verbeek & Bill Triggs

LEAR Team, INRIA Rhône-Alpes, Grenoble, France
Oral presentation at NIPS 2007, Vancouver, Canada
Overview

• Introduction

• Image representation & features

• Segmentation model & learning

• Experimental results
Visual Recognition

• Recognition of visual categories is performed at different levels of detail
 ▶ categorization: presence/absence of category in image
 ▶ localization: mark category instances with enclosing bounding-box
 ▶ segmentation: give flexible outline of (instances of) category in image

• Training data also comes in these different forms
 ▶ in general pairs \(\{image_n, annotation_n\}_{n=1}^N \)

• Training data and recognition task may use different levels of detail
 ▶ e.g. classification annotation to learn segmentation model [Verbeek & Triggs 2007]

Some images and annotations from the PASCAL Visual Object Classes Challenge 2008
Learning to Segment from Partially Labeled Images

- Goal: joint recognition and segmentation
- Training data: images with semantic segmentation
- Question: how (good) can we do using partially labeled images?
 - full manual labeling is tedious to produce
 - labeling near category borders error prone
 - full segmentation not critical for learning?

An example image, its full labeling, and partial labeling: black pixels remain unlabeled.
Overview

- Introduction
- Image representation & features
- Segmentation model & learning
- Experimental results
Modeling Images as Collections of Local Patches

- Dense sampling of image patches on regular grid
- Feature vector associated with each patch
- Class label associated with each patch
 - e.g. grass, building, sky, ...
Local Image Descriptors

- Quantization of feature space (regular grid, or k-means)
- Each patch represented by corresponding "visual words"
- Patch described with bit-vector using concatenated one-of-k coding
• **Accumulate a local feature histogram** ("bag of visual words") in each cell of a coarse grid covering the image (1 × 1, 2 × 2, . . .)

• **Histogram used as feature by every patch in the cell**
Overview

- Introduction
- Image representation & features
- Segmentation model & learning
- Experimental results
Conditional Random Field Model

- Random field models spatial contiguity of labeling X

$$p(X|Y) = \frac{1}{Z} \exp \left(-E(X|Y) \right)$$

$$Z = \sum_X \exp \left(-E(X|Y) \right)$$

- Partition function Z generally intractable to compute

- CRF energy function combines
 - local image features
 - aggregate features
 - neighboring labels
Energy Function using Single Aggregate Feature

• Let n index the N image patches, $X = \{x_n\}$ and $Y = \{y_n\}$
 - $x_n \in \{0, 1\}^C$ is a one-of-C coding for the C class labels

• Let h denote the average of the feature vectors $h = \frac{1}{N} \sum_n y_n$

\[
E(X|Y) = \sum_n x_n^T A y_n + \sum_n x_n^T B h + \sum_{n \sim m} \phi_{nm}(x_n, x_m)
\]

• Matrices A and B are $C \times D$ (with D dimension of feature vector)

• Pairwise potential:
 - Potts-model (with contrast term): $\phi_{nm}(x_n, x_m) = (\sigma + \tau d_{nm}) \cdot x_n^T x_m$
 - Class dependent potential: $\phi_{nm}(x_n, x_m) = x_n^T C x_m$

• Trivial to obtain derivative of $\partial E(X|Y)/\partial \theta$ for an image Y and a labeling X.
Learning from Partially Labelled Images

- Usual likelihood maximization of complete label field not possible
 - Deleting unlabeled patches from model could remove all label transitions

- Partial labeling defines a set of compatible complete labelings S
 - unlabeled sites that can have any label, e.g. near object boundaries
 - allows more general constraints: e.g. force some sites to have the same label

- Maximize the probability to get a labeling in S

 $$L = \log p(X \in S | Y) = \log \sum_{X \in S} p(X | Y)$$

- Intractable sum over exponential nr. of label completions $X \in S$
Learning from Partially Labelled Images

• Recall the partition function:

\[Z = \sum_X \exp - E(X|Y) \]

• Situation is not much worse than the complete labeling case

\[L = \log \sum_{X \in S} p(X|Y) = \log \sum_{X \in S} \frac{1}{Z} \exp - E(X|Y) \]

\[= - \log \left(\sum_X \exp - E(X|Y) \right) + \log \left(\sum_{X \in S} \exp - E(X|Y) \right) \]

• Gradient of log-likelihood for a parameter \(\theta \)

\[\frac{\partial L}{\partial \theta} = \left\langle \frac{\partial E}{\partial \theta} \right\rangle_{p(X|Y)} - \left\langle \frac{\partial E}{\partial \theta} \right\rangle_{p(X|Y, X \in S)} \]
Learning from Partially Labelled Images

• Gradient of log-likelihood for a parameter θ

\[
\frac{\partial L}{\partial \theta} = \left\langle \frac{\partial E}{\partial \theta} \right\rangle_{p(X|Y)} - \left\langle \frac{\partial E}{\partial \theta} \right\rangle_{p(X|Y, X \in S)}
\]

• To compute expectations of gradient of energy we need
 ▶ unary terms: marginal label distribution for single sites
 ▶ pairwise potential: marginal label distribution for neighboring sites

• We run Loopy Belief Propagation twice
 ▶ for prediction $p(X|Y)$ & for label completion $p(X|Y, X \in S)$

• Log-likelihood given by difference of log-partition functions
 ▶ Use LBP marginals to compute the Bethe free-energy approximations

\[
L = \log \sum_{X \in S} p(X|Y) = -\log Z_{p(X|Y)} + \log Z_{p(X|Y, X \in S)}
\]
Overview

• Introduction

• Image representation & features

• Segmentation model & learning

• Experimental results
Data Set and Experimental Setup

- **MSRC data set**: 240 images of 320×213 pixels, 70% of pixels labeled

- **9 classes**: building, grass, tree, cow, sky, plane, face, car, bike.

- **120 images to train**, 120 to evaluate, average over 20 trials
Performance of Local & Aggregate Features

- **Performance without CRF neighbor coupling**
 - no aggregate features, at single scale, or at multiple scales

- **Result: Large-scale aggregates are most informative**
 - including additional aggregate scales improves results slightly
The Pairwise Potential of the CRF

• Both random field spatial coupling and image-wide context are useful
• Exact choice of pairwise potential is less important

- IND: no coupling, CRF\(_\sigma\): Potts, CRF\(_\tau\): contrast Potts, CRF\(_\gamma\): class based
- local features only (red); including global aggregate (black)
- [1] Schroff et al. ICVGIP’06: optimized aggregation window, no coupling
- [2] our PLSA-MRF model CVPR’07: generative, cross-validation for \(\sigma\)
Recognition as a function of the amount of labeling

- Decimate training labels using morphological erosion filters of increasing size

- Good performance with CRF when only 40–70% of labels available
- Applying small erosion improves the model – due to label errors
Summary

- Good CRFs can be learned from partially labelled training images
 - marginalize over all possible label completions
 - works if label transitions are completely unobserved

- Including aggregate features significantly improves performance
 - image-wide aggregates are the most informative

- Pairwise potential is crucial for good segmentations
 - but different forms yield comparable performance