Non-linear dimensionality reduction

Michel Verleysen
Université catholique de Louvain (Louvain-la-Neuve, Belgium)
Electricity department

June 2002

Motivation

- High-dimensional data are
 - difficult to represent
 - difficult to understand
 - difficult to analyze

- Example: MLP (Multi-Layer Perceptron) or RBFN (Radial-Basis Function Network) with many inputs: difficult convergence, local minima, etc.

- Need to **reduce the dimension of data while keeping information content**!
Motivation: example

\[\text{Supervised learning with MLP} \]

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_d
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 \mathcal{F}_1 \\
 \mathcal{F}_2 \\
 \mathcal{F}_3 \\
 \vdots \\
 \mathcal{F}_p
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 y
\end{pmatrix}
\]

\[d > p \]

What we have:

- High-dimensional numerical data
 coming from:
 - sensors
 - pictures,
 - biomedical measures
 (EEG/ECG),
 - etc.
What we would like to have:

- A low-dimensional representation of the data in order to:
 - visualize
 - compress,
 - preprocess,
 - etc.

Why?

- Empty space phenomenon:
 - # points necessary for learning grows exponentially
 with space dimension

- Curse of dimensionality
 - « Spiky » hypercube
 - Empty hypersphere
 - Narrow spectrum of distances
How ?

- Build a (bijective) relation between
 - the data in the original space
 - the data in the projected space

- If bijection:
 - possibility to switch between representation spaces
 (« information » rather than « measure »)

- Problems to consider:
 - noise
 - twists and folds
 - impossibility to build a bijection

Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons
- Conclusions
Content

- Vector Quantization and Non-Linear Projections
 - Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
 - Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
 - Comparisons
 - Conclusions

NLP <-> VQ

- Non-Linear Projection
- Vector Quantization

Reduction of the dimension of the data (from d to p)
Reduction of the number of data (from N to M)

Warning: « lines and columns » convention adopted in linear algebra – contrary to most neural network courses and books...
Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
- Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons
- Conclusions

Principal Component Analysis (PCA)

- Goal:
 - To project linearly while keeping the variance of the data

- Computation:
 1. Covariance matrix C of the data
 \[C = E(X_i X_i^T) = \frac{1}{N} X X^T \]
 2. Eigenvectors and eigenvalues of C
 \[V_i = \text{main directions} \]
 \[\lambda_i = \text{variance along each direction} \]
 3. Projection & Reconstruction
 \[Y = V_{1:slope}^T X \]
 \[X = Z = V_{1:slope} Y \]

- Also called « Karhunen-Loeve » transform
Metric Multi-Dimensional Scaling (MDS)

Goal:
- To project linearly while keeping the \((N-1)*N/2\) pairwise distances

Computation:
1. Matrix \(D\) of the squared distances
 \[D = \{ d_{i,j} \} = \{ (X_i - X_j)^T (X_i - X_j) \} \]
2. EigenVectors and eigenvalues of \(D\) after centering (= \(X X^T\))
 \(V_i\) = coordinates along the main directions
 \(\lambda_i\) = variance along each direction
3. Projection
 \(Y = \sqrt{\text{diag}(\lambda_{1:sdp})} \cdot V_{1:sdp}^T\)

Result of PCA = result of metric MDS !!!
- Only distances are needed -> more independent from representation!

Limitations of linear projections
- Detection of linear dependencies only
- What happens with non-linear dependencies?

[Diagram showing principal components vs. nonlinear dependencies]
Content

Vector Quantization and Non-Linear Projections

Limitations of linear methods
- Principal Component Analysis (PCA)
- Metric Multi-Dimensional Scaling (MDS)
- Limitations

Nonlinear Algorithms
- Variance preservation
- Distance preservation (like MDS)
- Neighborhood preservation (like SOM)
- Minimal reconstruction error

Comparisons

Conclusions
Local PCA (1/2)

Criterion:
- Preserve variance (like PCA) locally

Calculation:
1. Vector quantization:
 prototypes $C_r = \text{representative points of data} \ X_i$
2. Tessellation:
 Voronoi zones = set of X_i with same BMU index $r(i)$
3. PCA on each zone:
 the model is locally linear and globally non linear
4. Encoding:
 X_i (dimension d) transformed in $r(i)$ & Y_i (dimension p)

Local PCA (2/2)

Example

Shortcomings:
- No « continuous » representation
- Mosaic of « disconnected » coordinate systems
Kernel PCA (1/3)

• Criterion:
 • To preserve variance (like PCA) of transformed data

• How ?
 • To transform data non-linearly
 (in fact, to transform non-linearly the MDS distance matrix)
 • Transformation: allows to give more weight to small distances
 • Transformation used: often Gaussian
 • Interesting theoretical properties:
 • non-linear mapping to high-dimensional spaces
 • Mercer’s condition on Gaussian kernels
 • …

Kernel PCA (2/3)

• Calculation:
 1. Dual Problem (cfr PCA <-> MDS):
 \[(C = X X^T) \quad D = X^T X = [X_i^T X_j] \]
 2. Nonlinear transformation of data:
 \[D' = [\Phi(X_i, X_j)] \text{ with } \Phi \text{ s.t. } \Phi(u,v) = \Phi(u) \Phi(v) \] (Mercer condition)
 3. Centering of D'
 4. Eigenvalues and eigenvectors of D':
 \[V_i = \text{coordinates along the main directions} \]
 5. Projection:
 \[Y = V_{1:p}^T \]
Kernel PCA (3/3)

Example:

Shortcomings:
- Eigenvalues = 0.138, 0.136, 0.099, 0.029, ...
- Dimensionality reduction is not guaranteed...

Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons
- Conclusions
Sammon’s Non-Linear Mapping (NLM) 1/2

Criterion to be optimized:

- Distance preservation (cfr metric MDS)

Sammon’s stress = \[
\frac{1}{\sum_{i<j} \sum_{i<j} (\delta_{i,j} - d_{i,j})^2}
\]

Preservation of small distances firstly

Calculation:

- Minimization by gradient descent

Example:

- Shortcomings:
 - Global gradient: lateral faces are « compacted »
 - Computational load (preprocess with VQ)
 - Euclidean distance (use curvilinear distance)
Curvilinear Component Analysis (1/2)

Criterion to be optimized:
- Distance preservation
- Preservation of small distances firstly
 (but « tears » are allowed)

Calculation:
1. Vector Quantization as preprocessing
2. Minimization by stochastic gradient descent (±)
3. Interpolation

Curvilinear Component Analysis (2/2)

Example:

Shortcomings:
- Convergence of the gradient descent: « torn » faces
- Euclidean distance (use curvilinear distance)
NLP: use of curvilinear distance (1/4)

Principle:
Curvilinear (or geodetic) distance

= Length of the shortest path from one node to another
in a weighted graph

NLP: use of curvilinear distance (2/4)

Useful for NLP

Curvilinear distances are easier to preserve!
NLP: use of curvilinear distance (3/4)

Integration in projection algorithms:

\[d(F; E_s, r) = \sum_{\substack{j, i \in I \setminus \{s\} \cap \{r\} \cap \{s, rs, r\CCA\} \cup \{s, rs, r\CCA\} \cup \{s, rs, r\CCA\}}} \left(-\delta_{ji} \right) \]

use curvilinear distance (instead of Euclidean one)

NLP: use of curvilinear distance (4/4)

Projected open box:
Sammon's NLM with Euclidean distance

Faces are « compacted »

Projected open box:
Sammon's NLM with curvilinear distance

« Perfect »!
Isomap (1/2)

- Published in *Science* 290 (December 2000):

 \textit{A global geometric framework for nonlinear dimensionality reduction}.

- Criterion:
 - Preservation of geodesic distances

- Calculation:
 1. Choice of some representative points (randomly, without VQ!)
 2. Classical MDS, but applied on the matrix of geodesic distances

Isomap (2/2)

- Example:

- Shortcomings:
 - No weighting of distances: faces are heavily « compacted »
 - No vector quantization
Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons
- Conclusions

Self-Organizing Map (SOM) (1/2)

- Criterion to be optimized:
 - Quantization error & neighborhood preservation
 - No unique mathematical formulation of neighborhood criteria
- Calculation:
 - Preestablished 1D or 2D grid: distance \(d(r,s) \)
 - Learning rule:
 \[
 r(i) = \arg\min_r \| X_i - C_r \|
 \]
 \[
 \Delta C_r = \alpha \cdot \mathbf{e}^\frac{-d^2(r, r(i))}{2\sigma^2} (X_i - C_r)
 \]
Self-Organizing Map (SOM) (2/2)

Example:

Shortcomings:
- Inadequate grid shape: faces are « cracked »
- 1D or 2D grid only…

Isotop (1/3)

Inspired from SOM and CCA/CDA

Criterion:
- Neighborhood preservation
- No known math. formula…

Calculation within 4 steps:
1. Vector quantification
2. Linking prototypes C_r
3. Mapping (between d-dim. and p-dim. spaces)
4. Linear interpolation
Isotop (2/3)

1. Vector quantification
 - No preestablished shape

2. Linking of all prototypes
 - « Data-driven neighborhoods »

Isotop (3/3)

3. Mapping
 - VQ (~SOM) of a Gaussian pdf

4. Linking of all prototypes
 - Local linear interpolations
Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error

Comparisons

Conclusions

Autoassociative MLP (1/2)

- Criterion to be minimized:
 - Reconstruction error (MSE)
 - after coding and decoding of the data
 - with an autoassociative neural network (MLP)

- Autoassociative MLP: unsupervised (in=out)
Autoassociative MLP (2/2)

Example:

Shortcomings:
- "Non-geometric" method
- Slow and hazardous convergence (5 layers!)

Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons
- Conclusions
Comparisons: dataset

- Abalone (UCI Machine learning repository):
 - 4177 shells
 - 8 features (+ sex)
 - Length
 - Diameter
 - Height
 - Whole weight
 - Shucked de la chair
 - Viscera des viscères
 - Shell weight
 - Age (# rings)
 - VQ with 200 prototypes
 - Reduction from dimension 7 to 2 and visualization of the age (colors)

Comparisons: results (1/4)

- Sammon's nonlinear mapping:
Comparisons: results (2/4)

Curvilinear Component Analysis:

Comparisons: results (3/4)

Self-organizing map:
Comparisons: results (4/4)

Isotop:

Comparisons: summary

<table>
<thead>
<tr>
<th></th>
<th>Distance preservation</th>
<th>Neighborhood preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Rigid» method</td>
<td>Sammon’s mapping</td>
<td>Self-Organizing Map</td>
</tr>
<tr>
<td></td>
<td>(fixed weighting)</td>
<td>(fixed neighborhood)</td>
</tr>
<tr>
<td>«Flexible» method</td>
<td>Curv. Comp. Analysis</td>
<td>Isotop</td>
</tr>
<tr>
<td></td>
<td>(adaptative weighting)</td>
<td>(adaptative neighborhoods)</td>
</tr>
</tbody>
</table>

Warning: model complexity!
Content

- Vector Quantization and Non-Linear Projections
- Limitations of linear methods
 - Principal Component Analysis (PCA)
 - Metric Multi-Dimensional Scaling (MDS)
 - Limitations
- Nonlinear Algorithms
 - Variance preservation
 - Distance preservation (like MDS)
 - Neighborhood preservation (like SOM)
 - Minimal reconstruction error
- Comparisons

Conclusions

Research directions

- NLP methods
 - Neighborhood decrease in CCA/CDA
- Curvilinear distance (geodesic)
 - Study and implementation
 - Integration in SOM, CCA, Sammon's NLM and Isotop
- Non-Euclidean distances
 - Alternative metrics are considered (L_inf, L_1, L_0.5, etc.)
 - Integration in curvilinear distance, VQ and NLP
- Piecewise linear interpolation
 - Study and implementation
 - Integration in Sammon's NLM, CCA and Isotop
- New algorithm: Isotop
Acknowledgements

Most of the content of these slides is based on the work of my colleague John Lee