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Abstract

Autoregressive models with Markov switching are useful to model piecewise stationary
time series, in the way that a hidden Markov chain governs the time dependent distribution
of an observed stochastic process. Since this chain is hidden, common approach to the
recursive estimation problem is to use algorithms suitable for missing data like recursive E.M.
algorithm or suboptimal Kalman filtering techniques. However, recent maximum likelihood
method based on the gradient have shown better properties of convergence in the framework
of standard hidden Markov model. In this paper, we generalise and improve this approach
for Markov switching autoregressive models.

Keywords. Switching autoregression, Markov regime, maximum likelihood estimator;
recursive algorithm.

1 Introduction

Dynamical systems which alternate between different dynamics are useful description of time-
varying situations. Hidden Markov Model (HMM) have been widely applied for modelling such
processes. Although original Hidden Markov Models use mean instead of regression for the
structure of the time series, the generalisation is straightforward and these models where, for
example, used in econometry by Hamilton ([5]). The main method for estimate the parameter of
such model are based on the maximum likelihood estimator (MLE), the non-recursive estimator
have been widely studied in pratice or in theory, see Rabiner [14] for a tutorial, Leroux [10] ,
Bickel, Ritov and Rydén [1] for statistical properties of the MLE in the case of original HMM,
Krishnamurthy and Rydén [8], Douc, Moulines and Rydén [3] for the statistic properties of
MLE in the case of autoregressive models with Markov switching. In this paper we deal with
recursive estimation of stationary switching autoregressions. There are two major methods for
recursive estimation of a HMM model. The first one, is the recursive E.M. algorithm as in
Krishnamurthy and Moore [7] or in Holst et al. [6], the second method is to use a modification of
kalman filtering technique as in chapter 6 of Elliott et al. [4] or Millnert [12]. However, recently,
Collings and Rydén [2] have studied maximum likelihood method based on gradient algorithm
technique. This method has shown better properties of convergences and seems to be near to the
optimal asymptotic properties , indeed the author shows that their algorithm is better than the
kalman technique especially in low noise conditions. In this paper we generalise their algorithm



in the framework of autoregressive models. Moreover we improve their implementation in the
following ways, first we use a parametrisation which avoid to use constrained optimisation for
the transition matrix of the hidden Markov chain; second we simplify greatly the calculus of
the derivative of the log-likelihood thanks the use of the predictive filter of the hidden state ;
and finally we explicit entirely the calculus in the fundamental case of multivariate regression
models with Gaussian noise. The paper is organised as follow. Switching autoregressive models
are introduced in Section 2. In Section 3, we show how to compute the log-likelihood and it’s
derivative in a general framework then in the case of multivariate Gaussian regression models. In
Section 4 we deduce from the previous section the recursive algorithm. The section 5 is devoted
to numerical examples and comparison with the recursive E.M. scheme.

2 Switching autoregressive models
Consider the process (X;,Y;),c5, such that

1. (X¢);ez is a Markov chain in a finite state space E = {e1,...,ex}, which can be identified
without loss of generality with the simplex of RY , where e; is the unit vector in RV with
unity as the ¢th element and zeros elsewhere.

2. Given (X}),cy, the process (Y;),.; is a sequence of autoregressive models of known order
p in R?, so the distribution of ¥;, depends only on X, and Yp,—1,---, Yy_p.

For a fixed ¢ , the dynamic of the model is :

_ Xt+1
Yip1 = FXt+1 (Y%—p-l-la Tt ’Yt) + &

with Fx, , € {Fe,,...,Fey} continuous derivable functions and for each e; € E, (7)o is a
i.i.d sequence of random variables of R?, note that the two sequence (£f),cp. and (g;’) are
independent if i # j.

Now we will introduce an state space model notation as in Elliott et al. [4].

If we write F; = o { Xy, - -+, Xy}, for the o-field generated by Xy, - - -, X;., the Markov property
implies that

teN*

P (X1 =¢€i|F) = P(Xyy1 =€ | Xy)

Write
aij = P (Xp41 = ¢; | Xy =¢;) and A = (a;;) € RVN

and define the martingale increment :
Vit = X1 — E [ X1 | F] = Xy — AX,.
With the previous notations, we obtain the general equation of the model, for ¢ € N :

{ Xiy1 = AXy + Vi
Kf-l-l = FXt+1 (Kf—p-}-la tec ,Y;f) + EXty1

(1)

Note that it is possible to have different known orders for the individual autoregressive processes.
Then p should be interpreted as the maximum of the individual orders, but for simplicity of
notation we have used a common order p.



Sufficient conditions for stationary solution of such model can be found in Yao and Attali
[16]. It is worth to note that some autoregressive process might result individually in an un-
stable system but the whole switching process may be stabilised when allowed to switch with a
Markovian regime.

3 The log-likelihood function and it’s derivative

3.1 Model parameters

The parameters to be estimated in the model are :

e The coeflicients (a;;) of the transition matrix A
e The parameter vectors (3;);,<y of the noise

e The parameter vectors (we;);<;<n Of regression functions (Fe,); ;< n-

The parameter vector § € RP, where D is the dimension of 6, denote the concatenation of all
parameter vectors, i.e. the complete vector to be estimated.

The properties of a recursive estimator can be highly dependent on the parametrisation of
the model. In our model the transition matrix A is stochastic, the sum of a any column of A
is 1, so we have N — 1 free parameters for each column. To deal with this constraint, we write
vij = In %L, note that vy; = 0, and (vij,---,vn_1,;) € RV7'. This parametrisation yields us
to optimise the matrix A without constrained optimisation. If a;; = 1 or a;; = 0 then v;; = o0
and a consistent estimator should tend to oo respectively.

hence, if we note A; the jth column of A, we have :

evii
Aj = . ,
]_ + eUIJ _|_ e + eUN—lj 1<i<N
Thus, we deduce the calculus the partial derivatives of A with respect of the parameters v;;:

8ai]- . 0 evii _ evij 1 evii
Ovij  Ovijl+e% +---+e'N-1  1+4e% + ...+ eVN-1 1+ eV 4. 4 eVN-1i

then
0a; i
BUZ- = a;;(1 — aij) (2)
and for [ # 4
Oaij evii eVl
ouyj ] 4o eUN-1G X (_1 RS e’UN—lj) A (3)
Moreover, if k # j :
Oais
aij _
Oug,



3.2 The log-likelihood function

In order to build our recursive algorithm we begin to calculate the log-likelihood for constant
parameter 6 et observation (y_1,--+,yn). Let Lg(y1,---,yn) be the log-likelihood conditionally
to the first p observation y_,41,--+, 90 and the initial state X;. We have

n—1
Le(yla ayn) = LB(yn |y1a T 7yn71) X H Lﬂ(yt |y17 U 7yt71)
t=1
N
= ZLG(yn |Xﬂ =€,Y1," ", Yn—1 )PG(XH =€ ‘yh Ut ,yn—l)
i=1
n—1
X H Lo(ye lyr, - y1-1)
t=1
Note, in the sequel
e p? the vector with i-th components : pf(i) = Py(X; = e; |y1,-- -, ¥t—1, ), P} is known as the

predictive filter of X,.

e b the vector with i-th components : bY(i) = Lg(y:|X; = €i,y1,+++,Ys—1), the conditional
density of y; knowing X; = e; and (y1,--+,yi—1)-

. Bf = diag (bg) the matrix with bf for diagonal and zeros elsewhere.

The log-likelihood is then

In(Lo(ys, -, yn)) = > (b} pf) (4)
t=1

Where the upperscript 1" denote the transposition.

Note the aditive form of this formule. Moreover, the predictive filter pf verifies a “Baum-like”
recursion, since a straightforward adaptation of Legland and Mevel [9] shows that it verifies the
recurrence :

o _ ABIp] 5
Piy1 = T ¢ ( )
bi" py
Moreover these author show that the choice of the initial condition p; don’t really influence the
value of Lg(y1,- - -, yn) because of the exponential forgetting properties. So, we will suppose that

p? is the uniform distribution on E and we can recursively calculate pf ,t=1,---n.

3.3 Derivative of the log-likelihood
Let 6; be the j-th component of 8, we have :

ab"Tp"
dIn(Lo(ys, -, ym)) _ 2": o7,
00 =1 bgTPg



with

ouTl _ o”
060, 06

7 0p?
e (6)

()
Dy + bt 80_7

The calculus of g%g depend of the model and is generally easy if we know the derivative of
the regression function and the density of the noise with respect to their parameters. We will
explicit this derivative for the Gaussian case in the next section.

The calculus of g%g with respect to 6; can be obtained by derivating the relation (5) with

respect to parameter 6; :

T
Oty _OABIpl 1 ypee W B (_( 1 )2>
b

(99]' (99]' bprt 89]' ngg
SO
oples _ (9AB] , 6 Ot 1 0. (00 o 70D} 1
= AB] —~ AB b, — — .
00 a6, "t 50 ) o pf TARPE g, P ey ) (" pf)>2

Then, we have :

opl 4 _ ABY
00;  bip!

T T
il ]a_pﬁ (MB?) ol ABfp! (abf pa>
T . . T T g

by pl | 99; 90; ) v pl (b pf)2 \ 99

and

Opli _ AB]

. T
W5 o

000" | ap? (04 OB\ p?  AB%? (ot
ptt]% ( [y t)pt i Pt t .0 (7)

EY - p
Wlpt| 00; ° \06; " 00; ) bp!  (m0Tp0y2 \ 96; '

with g7t = 0 for all j.
The calculus of % is easy since if 6; is an element belonging to (v;),, j<N—1 S8Y Vim, We

have thanks equation (2) and (3) :

0A
26, = C(vim)

with C'(vy,) a matrix with only the mth column C,,, non null and with :

Cm(i) = —@imaym if i #1
{ Crm (i) = am(1 ! apn) if i=1 (8)

3.4 The multivariate Gaussian case

o
In this section we explicit the calculus of the derivative %? for the multidimensional Gaussian
J
case, we introduce first the parametrisation of the parameter of the noise (the covariance matrix)
and the regression functions.



3.4.1 Parametrisation in the Gaussian case

Without loss of generality, for simplify the notation, we will suppose in the sequel that p = 1,
the generalisation to p > 1 is straightforward.

Parametrisation of the covariances matrix To be sure that the likelihood is well defined
we have to suppose that the covariances matrices ¥, are positive definite, so we can consider
the coefficients of it inverse Ee_il as parameters, moreover we considere only the coefficient upper
of the diagonal (diagonal include) because the matrix is symmetric.

Parametrisation of the regressions functions We suppose only that the functions F,,
1 < ¢ < N are continuesly derivable with respect of is parameter vector we; . So Fg; can be
classical linear function but also more complicated function like multilayer perceptrons.

the calculus of bf is then easy since

b)(i) = Lo(y; | Xt = €ir Yt 1, Y1)

= \/ﬁw €Xp (_% ((yt - F, (yt_l))TE@_il(yt — I, (yt—l))))

is the conditional density of y; knowing X; = e; and (y1,- -+, Yn—1)-
¢
3.4.2 Calculus of 3
J
Since bY (i) is never null, we can use the formulas :

AQ)
26,

Oln (bY(3))

= 4(0) x
J

because the derivative of the logarithm of b/ (i) is easy to calculate. Now, we recall some classic
formulas which can be found in Magnus and Neudecker [11]:

o If A (with coefficients a;;) is a constant matrix and X a matrix with coefficients z;; :

0

8:%-

T’I‘(AX) = Qjj; (9)

e Let X (0) be a paramtrized invertible matrix, note X ! it’s inverse, if 0; is one component
of 8, we have:

b 4, 0
5, In(det(X)) = tr(X la_an ) (10)

o If A, B, C are three matrix with convenient size, the trace of their product is invariant by
circular permutation :

Tr(ABC) = Tr(BCA) = Tr(CAB) (11)



apply the formulas (11) and (9) give :

ATr((ye — Fe;(y1-1))" B¢, (yt — Fe, (y1-1)))
06,

= ((yt = Fe,(y1-1))(y — Fe, (ytfl))T)kl

and the formula (10) give (remember that we take only the coefficient upper of the diagonal) :

dln(det(x;! .
PG — (S if b =1
dIn(det(=, .
% =2x (Eei)kl, ka #l

Finally the ith element of u; is:

usi) = 80) x 5 ((Se)ss — (0 = Peslpe-)) = Fes(ye-)7) ) (12

if k=1, and
wi(8) = () X ((Ze)mt = (W = Fe; (1)) (We — Fes (1)) ) (13)
ith£1.
If ¢; is a coefficient of the matrix ¥, : 0; = (8,
o _
00, — "

where u; is a vector of RV with all coordinate null, except the ith which is :

0[—5(dIn(2r) — In(det(2;")) + Tr((y — Fe, (31-1))" 55" (91 — Fei (y1-1))]
06,

(14)

If 6; is a parameter of the regression function F,; Applying formula (10), give us :
oY (3)
00;

@ Y (i)~ 00 OG5 1) ) )

1<m,l<d

OF; (yt—l)(l))
00,

Now by collecting these derivatives with the formulas (7), (8), we obtain the expression of
the derivative of the log-likelihood. The application to the recursive estimation is treated in the
next section.



4 Recursive estimation

4.1 Recursive maximum likelihood estimation

A recursive estimator 0,41 of the parameter 6 based on the first n + 1 observations of (y;),cn-
is of the form :

9n+1 =0, + ')’anh(yVH—la en)

where h(y,0) is a score vector function, the matrix H,, is an adaptative matrix and 7, is a gain
sequence satisfying

o0 o0
Yo <0, Y =00, Y 7y <00 (15)
n=1 n=1
For independent observations with density f(y,#) , the score function is

_ [ 9In(f(y,9)) :
h(y,0) = {T, 1<i< D}

and an optimal choice of H, is the inverse of the information matrix, i.e. H,; ! = I(f,), where
1(6) = E [h(y,0)h(y,0)"]

Computation of this information matrix often requires numerical integration and it is thus cum-
bersome. So we shall instead use the inverse of the observed information matrix, i. e.

L1
Hy' == h(ye, Ok-1)h(yk, Or-1)"
n k=1

The matrix H, can be computed recursively by means of the matrix inversion lemma, writing
hy = h(ynaenfl)a we have

H = 1 (H L FYanflhnthnfl )
n — n—
L=y (1 =)+ VnhZthn

4.2 Recursive maximum likelihood estimation in switching autoregression
with Markov regime

In our case the observation are not i.i.d., however the log-likelihood has an additive form similar
to log-likelihood for the i.i.d. case. So, we have

{ 0n—|—1 =0, + 'Yanhn—}—l

_ 1 _ ’Yan—lhnhgiHn—l
Hn 1l Hn_l (1*’)’n)+7nh%‘thn

with h,, is the gradient vector so that the jth coordinate is :

T
_ o T §pfn
hns1(j) = (ﬁ) P ()
n n




where
and

_ A,BY
T 0,1 0,
by Pn !

b 0, .
B 4 A aBen) pi't AnBlrpn (‘%ﬂ 0

A N <8An % -

AR AN " 06 ) o (e Tplyz \ o6 "
The conditions for consistency and asymptotic normality of these involved procedure are in gen-
eral still open questions even for independently and identically distributed (i.i.d.) observations.

Note that we are not in a Robbins-Monroe framework mainly because the vector pfl’fi_l is not the
an—l

update of pzn but the update of g)n , S0 the parameter vary at each update (we can do the

61) nﬁ- 1

same remark for the derivative Y
n

). However we will see that this algorithm seems to works
very well on simulated data.

5 Simulations

In this section we compare the performance of our algorithm on the examples proposed by Holst
[6] to study a recursive E.M. algorithm. The model are very simple it’s consist only on a two
regime switching Markov regression, with AR1 regressive models. Simulation on multivariate
models with multilayer perceptron as autoregressive function can be found in Rynkiewicz [15].

5.1 The models

The test examples are the following :

Example 1

Example 2

F., (y) = 1.5 — 0.70y
F., (y) =1.7-0.72y

In both cases the variances g.; = 0¢, = 1 and the transitions matrix is

0.9 0.1
A= ( 0.1 0.9 )

The first example is considered as an easy problem and the second one as a difficult one since
the information matrix of the model is nearly singular. The problem with the second model
is the proximity of the parameters of the two regression which implies great difficulties in the
estimation of coefficients in the transition matrix. To keep the same conditions than Holst et al.
we have simulated series of 10000 data. The number of replicates for the two experiences was
1000.

n—1

)



5.2 The estimation

The following precautions were used for the estimation task.

The choice of initial values Contrary to Holst et al. [6], we don’t use a priori knowledge
about the true value of the parameters., since this knowledge is almost always impossible to have
in real situations. So, we choose randomly (with an uniform law between —1 and 1) the initial
value of the regression function.

The initial value for the transition matrix was in all examples the neutral matrix

0.5 0.5
Ao = ( 0.5 0.5 )

To avoid to introduce a priori knowledge in our initial parameter we chose to initialise the
variances with o, = g¢, = 2.

The initial value of the information matrix Hy is the identity. In order to avoid inconsistency
the estimate of o., were supervised and projected such than o,, > 0. Moreover, the random
initial values lead us to do two pass on the data for estimating the parameter. Indeed 10000
observations isn’t a very long series for recursive estimation which is used in general for very long
time series.

Note that the second example is a more difficult task, so we do 10 random initialization of
the parameter for each estimation and we keep the estimation with the best likelihood.

Increased step size and averaging The gain sequence 7, scales the update of both H,, and
0,,. Apart from satisfying the restriction (15), it can be any function. Generally it has the form
Yn = %, Il € R. With the choice v, = 'L—O, vn tends to become too small too quickly and does
not allow fast convergence for initial estimates chosen far from the minimum error point. To
overcome this problem Polyak and Juditsky [13] suggest a method for applying a larger step size
and then averaging the estimate. Averaging is used to get a smoother estimate as the larger
step will mean higher sensitivity to noise, and also to ensure that the requirement 15 remains
satisfied. In our simulations we chose [ = 0.5.

5.3 Result

Holst et al. use a very expensive initialisation of the Hessian matrix thanks the estimation of
the information matrix on 100000 simulated data. But, this method seems to be contradictory
with the use of only 10000 data for the estimation task. Moreover we don’t know what will be
the behaviour of their algorithm if the preliminary initialisation (and so the initialisation of the
Hessian) is poor, in contrast we always use the identity matrix to initialise the Hessian.

The results are presented in Tables I-II which give observed means and standard deviations
of the final estimates.

The main remark about these results is that our seems to be a little bit better than those of
Holst et al. Indeed, in the first example the bias and the variances of is better for all parameter.
In the second example the situation is the same except for the ajp parameter (the last line).

Hence, the RMLE algorithm gives us a method to achieve very good results without using
unrealistic a priori knowledge about the true parameter of the model.
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Table 1: Parameter estimates in Example 1

Param. Start Mean Std Start Mean Std
(R.EM.) (R.EM.) (R.EM.) (RM.L.E.) (RM.L.E.) (RM.L.E.)
Fl =15 1.0 1.497 0.025 random 1.499 0.024
Fez1 =-0.7 —0.5 —0.697 0.022 random —0.699 0.012
O, =1 2 1.006 0.017 2 1.003 0.020
Fel2 =0 0.2 —0.000 0.016 random —0.000 0.016
F? = 0.2 0.002 0.032 random —0.000 0.018
Oey = 2 1.010 0.175 2 1.003 0.024
a11 =0.9 0.5 0.898 0.008 0.5 0.899 0.007
a2 = 0.1 0.5 0.101 0.015 0.5 0.101 0.007
Table 2: Parameter estimates in Example 2
Param. Start Mean Std Start Mean Std
(R.E.M.) (R.E.M.) (R.E.M.) (R.M.L.E.) (R.M.L.E.) (RM.L.E.)
F, =15 1.0 1.457 0.070 random 1.472 0.065
F2 =—0.7 —0.5 —0.679 0.033 random —0.667 0.020
Oe, =1 2 0.984 0.114 2 0.987 0.091
F! =11 1.5 1.675 0.067 random 1.700 0.065
F2 =—0.72 —0.56 —0.720 0.039 random —0.730 0.035
Oey, =1 2 1.077 0.620 2 0.997 0.240
a;; =0.9 0.5 0.819 0.056 0.5 0.860 0.046
ap = 0.1 0.5 0.104 0.065 0.5 0.105 0.072

Finally, the RMLE algorithm seems to be the state of art algorithm in recursive estimation of
switching Markov autoregressions. This results is unsurprising since most of consistent recursive
likelihood algorithms with suitable scaling Hessian matrix are asymptotically efficient.
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