Using the Kohonen Algorithm for
Quick Initialization of Simple Competitive
L earning Algorithm

Eric de Bodt', Marie Cottrell?, Michel Verleysen®

! Université Catholique de Louvain, IAG-FIN, 1 pl. des Doyens,
B-1348 Louvain-la-Neuve, Belgium
and
Université Lille 2, ESA, Place Deliot, BP 381,
F-59020 Lille, France
2 Université Paris |, SAMOS-MATISSE, 90 rue de Tolbiac,
F-75634 Paris Cedex 13, France

3 Université Catholique de Louvain, DICE, 3 pl. du Levant,

B-1348 Louvain-la-Neuve, Belgium

Abstract. In a previous paper ([1], ESANN’97), we compared the Kohonen
algorithm (SOM) to Simple Competitive Learning Algorithm (SCL) when the
goal is to reconstruct an unknown density. We showed that for that purpose, the
SOM adgorithm quickly provides an excellent approximation of the initia
density, when the frequencies of each class are taken into account to weight the
guantifiers of the classes. Another important property of the SOM is the well
known topology conservation, which implies that neighbor data are classified
into the same class (as usual) or into neighbor classes. In this paper, we study
another interesting property of the SOM algorithm, that holds for any fixed
number of quantifiers. We show that even we use those approaches only for
guantization, the SOM algorithm can be successfully used to accelerate in a
very large proportion the speed of convergence of the classicad Simple
Competitive Learning Algorithm (SCL).

1. Simple Competitive Learning and Vector Quantization

The SOM algorithm (as defined by T.Kohonen in [4]), can be seen as an extension of
the Simple Competitive Learning Algorithm (SCL). Let us give the definition of the

SCL agorithm that we use here. It is defined in most textbooks [3].

Let W be the data space (with dimension d), endowed with a density probability
function f(x). The data are randomly drawn according to the density f(x) and are
denoted by X3, Xp,...,Xn,. The number of desired classes is a priori fixed to be n. The

quantifiers g, o, ..., g, are randomly initialized. At each step t,

adata x., is randomly drawn according to the density f(X) ;
the winning quantifier g, is determined by minimizing the classical Euclidean
norm :

| Xer 1= Chsoll = miny || Xeer — G I 5

the quantifier o~ isupdated by O(+1) = Oir) + (1) (X1 - Givn)-
where €t) is an adaptatlon parameter WhICh SatISerS the classical Robbins-Monro
conditions (S e(t) = ¥ and S €(t) < ¥).

We observe that this definition is a particular case of the SOM agorithm, when the
neighborhood is reduced to zero. Sometimes it is called O-neighbor Kohonen
algorithm. In the general case, for the SOM algorithm, the updating concerns not only
the winning quantifier, but also its neighbors.

The SCL algorithm is in fact the stochastic or on-line version of the Forgy agorithm
(also called moving centers algorithm, Lloyd's algorithm, LBG). See for example [7],
[8], [9]. In this version of the algorithm, the quantifiers are randomly initialized. At
each step t, the classes Cy, C,, ..., C, are determined by putting in class C;, the data
which are closer to g than to any other quantifier g. Then the mean values of each
classis computed and taken as new quantifiers, and so on. The Forgy algorithm works
off-line as a batch algorithm and at each step all the quantifiers are updated. It also
exists an intermediate version of the algorithm, frequently named the K-means method
(Mac Queen, [9]). In that case, at each step, only one datais randomly chosen, and the
winning quantifier is updated as the mean value of its class.

In the following, we will denote by BV Q (for batch) the Forgy a gorithm.

It can be proven and it is well-known that BVQ (as well as any Vector Quantization
algorithm) minimizes the so-called distortion, which is exactly the mean quadratic
error:

n
(o]

Xo(f, 0 Gss-,00) =@ QX o] F () (D)
i=1 '
estimated by
1 n
o(f 0:,dz,---,0) Né é.”xj_qi"z)
i=1 x;1 G

j i

from the data x4, Xo,. .., Xn.

Note that the stochastic SCL algorithm also minimizes this distortion, but only in
mean value.

Let us denote by q;*, *, ..., g* one set of quantifiers which minimizes the
distortion. Generally the minimum is not unique and depends on theinitial values'. At
aminimum, each g* is the gravity center of its class G, with respect to the density f.
In an exact form?,

! To take thisinto account, we will realize al our comparison between algorithms
starting from the same initia points.
These equations are equivalent to the BVQ algorithm.

Qxf(x)dx

q* == &)
Q f(x) dx
estimated by
A~ éx-TC- Xj
0% = *
X1 ¢ 1

If we are able to exactly compute these values g*;, then it will be possible to precisaly
evaluate the performances (speed of convergence) of the algorithm. Thisis the goal of
the next section.

2. Optimal values for the one-dimensional case, with known
density.

In one-dimensional cases (d = 1), if the set Wis areal interval, and if the density f is
known and well-behaved, it is possible to directly compute the solutions g*; , starting
from agiven set of increasing initial values, by aiterative equation.

Astheinitial values are ordered, the current values qy, 0y, ..., O, are still ordered. The
classes G (1 £i £ n) are therefore intervals defined by C; = [a;, bi], with a = %2 (g1 +
g)and b =% (g« + g), for L <i<n, and a; = inf (W), b, = sup (W).

Equations (3) or (4) have no explicit solutions, but it is possible to get the solutions
g*;, with any desired precision, using numerical iterations. Annex A presents the
recurrent equations for the densities f(x) = 2x, 3%, € *. Knowing the optimal location
points of the quantifiers, it will now be possible to study the speed at which any
Vector Quantization Algorithm converge towards them. For this, we will study the
Euclidean distance between the current values of (gi(t)) resulting from some VQ
algorithm and the solutions (g*;), as a function of the numbers of steps. We define the
mean quadratic error

D*(t) = D(a().a*) = (Un) Sieien (G(t) —)2

which will be the error measure of the Vector Quantization agorithm that we
consider. Note that, as stated above, we carefully start from the same initial increasing
points for both VQ algorithm and deterministic computation of the (g*;).

In practical situations, the error measure D(t) decreases to 0 very sowly when using
the SCL agorithm.

In Figures 1, 2, 3, we represent the variations of the error measure for both SCL and
SOM with 2 neighbors for the three examples of densities. We can see that the 2-
neighbors SOM decreases to the optimal values (g*;) much quicker than the SCL
algorithm, even if it finally converges to its own optimal points (that can be computed

using equations (3) or (4), where C, = [g, b], and g =% (g.> +) and b; = Y2 (Q+2 +
g)), which minimize the generalized distortion (extended to the neighbors) :

X,(f,0,,d,,..-,4, =g e X - izfxdx (5
,(f,0,,0,...,0,) g%%‘fk" af f(x

where V(i) isthesaet { i- 1,i,i+ 1}.

yyyyyyyyyy

0,02
0,018
0,016
0,014
0,012

0,01
0,008
0,006
0,004
0,002

0

1 120 239 358 477 5% 715 834 953

Figure 1 (2x) Figure 2 (3%%) Figure 3 (exp (- X))

See in Annex A some details about the calculations. See aso in the Annex A avery
simple method to estimate in particular cases the so-called magnification factor ([4],
[10]). We have also to note that the increase of the total processing time of one
iteration when using the 2-neighbors SOM algorithm instead of the SCL agorithm is
significantly less than 1%.

So we propose in the next section to use a mixed agorithm, beginning by a SOM
algorithm and ending with a SCL agorithm.

3. Hybrid algorithm SOM/SCL

We propose now to use an hybrid VQ algorithm (denoted by KSCL), which consists
in an initial phase (a SOM agorithm with n neighbors), followed by the classical
SCL. We compare the value of the error measure after the same number of iterations
for KSCL and SCL.

For example, let us fix atotal number of iterations T, the initial ordered points g;(0),
02(0), ..., 0(0), a constant e and various probability functions (f(x) = 2x on [0,1], 3x?
on[0,1], € *on [0, +¥ [. Let usaso consider the 2-neighbors SOM algorithm, n = 2.

In Figures 4, 5, 6, we represent for the three probability densities that we took as
examples, the variations of the error measure for different KSCL algorithms. We
consider 4 cases where the 2-neighbors SOM algorithm is used during 0%, 30%;
60%, 90% of the total number of iterations T.

Figure 4 (2x) Figure5 (3% Figure6 (exp (- X))

We can observe that until some step, the 2-neighbors algorithm accelerates a grest
deal the decrease of the error measure. In al cases, using too early the SCL agorithm
dows down the decrease. But even after the optimal point for substituting SCL to
SOM, the performances remain better than those of the pure SCL. It is also clear that
determining the optimal step for using SCL instead of SOM strongly depends on the
probability density. So in practical situations, it will be necessary to experimentally
adjust it.

However, in any cases, (we experiment it for other probability densities, real data and
several values of the number of neighbors n), we can conclude that the SOM
algorithm can work as an efficient initialization of the SCL algorithm to accelerate
the convergence and improve the performances.

4. Conclusion

This fact is not surprising and was conjectured by some authors, because the
neighbors act as a noise with respect to the algorithm without neighbor. In fact, there
are alot of algorithms in which the noise plays the role of a temperature in the same
way as in Simulated Annealing. This temperature is positive at the beginning to help
avoiding local minima and decreasesto O after realizing afirst rough optimization.

5. Acknowledgements

The authors are grateful to Jean-Claude Fort and Gil Pages for fruitful discussions
about the topics of this paper.

References

[1] deBodt E., Verleysen M., Cottrell M., Kohonen maps versus vector quantization
for data analysis, ESANN’97, M.Verleysen Ed., D Facto, Bruxelles, 211-218,
1997.

[2] Gersho A., Asymptotically optimal block quantization, IEEE Trans. Inf. Theory,
25, 373-380, 1979.

[3] Hertz J.,, Krogh A., Palmer R., Introduction to the Theory of Neural Computation,
Santa Fe Institute, 1991.

[4] Kohonen T., Self-organizing maps, Springer, Berlin, 1995.

[5] Kohonen T., Computation of VQ and SOM Point Densities Using the Calculus of
Variations, submitted to Neural Computation, 1998.

[6] Kohonen T., Private Communication, 1998.

[7] LindeY., Buzo A., Gray R.M., An algorithm for vector quantizer design, |IEEE
Transactions on Communications, vol. COM-28, no. 1, January 1980.

[8] Lloyd S.P., Least squares quantization in PCM, IEEE Transactions on
Information Theory, vol. IT-28, no. 2, pp. 129-149, March 1982.

[9] MacQueen J. Some methods for classification and analysis of multivariate
observations, Proc. Of the Fifth Berkeley Symposium on Math., Stat. and Prob.,
vol. 1, pp. 281-296, 1967.

[10] Ritter H. and Shulten K., On the Sationary Sate of Kohonen's Salf-Organizing
Sensory Mapping, Biol. Cybern., 54, 99-106, 1986.

[11] Ritter,H., Asymptotic level density for a class of vector quantization processes,
|EEE Trans. on Neural Networks, 2, 173-175, 1991.

Annex A

We give below in Table 1, for each of the three examples of probability densities, the
distribution function and the recurrent equation (3) which provides the exact
calculation of the optimal values (g*;).

In fact, this exact computation can also be applied to evauate the so-called
magnification factor. Many authors (Gersho [2], Ritter [10], Kohonen [5]) give
arguments that show that the vector quantization which leads to a minimization of the
distortion X, corresponds to a discrete distribution which converges asymptoticaly
(when n goes to infinity) to a distribution with density :

g, (X) = Af (%) 6)
where Ais aconstant and a = 1/3, in the one-dimensional case.
So for the referred densities, (and for al the densities f(x) = (p+1) x° on [0,1], with p >
- 1), it is possible to write down the theoretical probability function g,, its distribution
function G,, and the relation which provides an estimation method for the exponent
a.

This relation is based on the following remark : the theoretical distribution function
G, can be estimated by the empirical distribution function Ga defined by

éa(qi) :Iﬁ, for LEi £n

So the optimal values (g*;) do verify this relation for each i, and this leads to a very
accurate estimation of a, for the three studied densities, using a smple linear
regression as written down in the last column. All these regresson models are
satisfied with a correlation coefficient equal to 1. This method to estimate the
exponent a is very accurate, because it uses the exact computation of the optimal
guantifiers (g*;) and there is no noise as in the stochastic computation of these points.

Seein Table 2, the estimations that we get for different numbers of quantifiers (n =
12, 25, 50, 100, 200, 500).

This method can aso be used to estimate the exponent a for the SOM with 2 or more
neighbors, as computed by Ritter in [11]. See for example Kohonen [6] who uses
some similar method. The generalization is very easy, it is sufficient to use the
corrected values for g; and b. For example for 2 neighbors, a =% (gi> +), b = %
(g+2 + g) and we get approximately a = 0.6, as derived by Ritter [11].

However, it is important to take into account that al these computations (as well as
the theoretical argumentsin Gersho [2], Ritter [10, 11], or Kohonen [5, 6]) rely on the
assumption that the limit distribution of the quantifiers (g*;) is unique. But in fact, this
result is not evident, and very difficult to prove. What classes of probability
distributions satisfy the uniqueness is an open question so far.

Density f Distribution bo |G Density ga | Ga
Function
(P*DXon[0.1] | 1 p+1bP?- a* (Pa+1)¥* X [In(in) = (pa+1) Ing
—_— 1
1
2xon[0,1] X 1 2b%- a (a+1)x¢ X+t In(i/n) = (a+1) Ing
q =— !
T3 biz _ aiz
3x*on [0,1] X 1 3b¢- &' (2a+1)x®@ | x@* In (i/n) = (2a+1) In g
G =773 3
49 - 3
e on [0, +¥] 1-x*e +¥ _aette?- b,e'b' -eh |ae¥® 1- € |-In(l-in)=(-2a)Ing
qi - e'a| - e'q
Tablel (g =%(g.1+ g) and b = %2 (gi+1 + Q).
Density n=12 n=25 n=50 n=100 n=200 n=500
2x on [0,1] 0.20 0.25 0.29 0.31 0.32 0.33
3x°on[0,1] 0.26 0.30 0.31 0.32 0.33 0.33
€’ on [0,+¥] 0.43 0.39 0.36 0.34 0.34 0.33

Table2

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

1

85 169 253 337 421 505 589 673 757 841 925

—Run 10 %
— Run 20 %
Run 30 %
—— Run 40 %
—Run 50 %
—Run 60 %
— Run 70 %
—Run 80 %
— Run 90 %
Run 100 %

Loi 2x

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

0

1

e

132 263 394 525 656 787 918

— Run 10 %
— Run 20 %
Run 30 %
— Run 40 %
— Run 50 %
— Run 60 %
— Run 70 %
— Run 80 %
— Run 90 %
Run 100 %

3X2

500

450 — Run 10 %
400 — Run 20 %
350 Run 30 %
300 — Run 40 %
250 — Run 50 %

— Run 60 %
200 ~ Run 70 %
150 —_Run 80 %
100 — Run 90 %

50 Run 100 %
0

1 142 283 424 565 706 847 988

Exp(-x)

