
SELF-ORGANIZING ADAPTIVE CONTROLLERS:
APPLICATION TO THE INVERTED PENDULUM

T. Minatohara T. Furukawa
Department of Brain Science and Engineering, Kyushu Institute of Technology

Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
minatohara-tetsuya@edu.brain.kyutech.ac.jp

furukawa@brain.kyutech.ac.jp

Abstract - In this paper, a novel framework of adaptive controller is proposed. The architecture,
called a ‘self-organizing adaptive controller, (SOAC)’ is based on a modular network SOM (mnSOM),
in which each nodal unit of a conventional SOM is replaced by a pair of a controller and a predictor.
Thus, an SOAC is regarded as an assembly of neural controllers, each of which is specialized to a
context or a target object. An SOAC learns the way to control multiple contexts or objects, in parallel
with generating a feature map of them. Simulations performed on an inverted pendulum suggested a
high adaptive control ability.

Key words - mnSOM, adaptive control, feedback-error-learning, inverted pendulum

1 Introduction

How can we give robots human control skills, which are accurate and flexible not too strict or sloppy,
and such that they allow us to take it easy? This presents us with challenges. We especially focus on
the generalization of performance from a small number of training patterns and quick responses to un-
expected changes. The study aims to tackle the problem using a stepping stone of self-organizing ar-
chitectures. Thus, our immediate target is to establish a ‘self-organizing adaptive controller (SOAC)’.
In this paper, two ideas are adopted to our architecture to achieve the target. One is that the archi-
tecture is based on a modular network SOM (mnSOM), and the other is that each module consists of
two blocks, namely, controller and predictor blocks.

The mnSOM proposed by Tokunaga et al. consists of an assembly of functional modules arrayed
on a lattice; these are the replacements for the vector units of a conventional SOM [1–3]. An mnSOM
has two aspects; one is its topology preserving mapping, and the other is its functional differentiation.
After training has been completed, the mnSOM selects a functional module that best matches the
context, and then processes input data with the module. Since many types of neural architectures
are available for functional modules, it is also possible to employ neural controllers as the modules.
In this case, the mnSOM is regarded as an assembly of controllers, each of which is specialized to
different control contexts or different target objects. Therefore, the mnSOM is expected to switch
those neural controllers depending on the context or the object; thus, the best matching controller
(BMC) is selected adaptively. Further, all of these functional modules can be trained from a small
number of training data sequences; thus, even if there are hundreds of modules and only a few training
datasets, the mnSOM trains all modules by making appropriate interpolations. This generalization of

WSOM 2005, Paris

Predictor

Controller

Predictor

Controller

D

D

Winner
Take
All

Controlled
Object

Controller

D

xx̂̂

xx uu

u = uu = u

uukk

**

xx~~

xx

predicted
state
predicted
state

desired statedesired state

current
state
current
state

control signalcontrol signal

Predictor
time delaytime delay

Figure 1: Scheme of self-organizing adaptive controllers.

performance is an advantage of using an mnSOM.

The second idea involves determining the BMC in a real-time control task. It is easy to determine
the BMC after applying all the controllers to the target object, but this is unrealistic in a real-time
task. Therefore, it is important to determine the BMC before controlling the object. To resolve
this problem, functional modules are extended to consist of two blocks, i.e., controller and predictor
blocks. The functional module that minimizes the prediction error is determined as the BMC, and
the paired controller block is used for actual control. In other words, the mnSOM always predicts the
object state at the next moment, and once an unexpected change occurs, it quickly changes the BMC.

A similar strategy with a modular architecture has been proposed by Wolpert and Kawato; their ar-
chitecture consists of multiple paired forward and inverse models [4]. In this architecture, the forward
and inverse dynamics models that are coupled together correspond to our predictor and controller, re-
spectively. The main difference of our model from Wolpert’s is that ours forms a self-organizing
map of the target objects as well as controlling them. This property of our model should have some
advantages for making an appropriate interpolation, analyzing objects, and finding hidden parameter
spaces. Therefore, our model can be regarded as an SOM based extension of Wolpert’s model. One
may also find a resemblance to the Local Linear Map proposed by Martinetz et al., which was applied
to the visual guided control task of a robot arm [5]. However, our architecture is essentially different.
The purpose of a Local Linear Map is to represent a single nonlinear controller as the combination of
the local linear operators; whereas, our model aims to generate an assembly of nonlinear controllers.
It is worth noting that an mnSOM can employ Local Linear Maps as controller modules. Thus, ‘the
mnSOM with Local Linear Map modules’ is one of the possible architectures of an SOAC.

In this paper, first the general idea of an SOAC is introduced, and then the results of its application
to an inverted pendulum are presented.

Self-Organizing Adaptive Controllers:Application to the Inverted Pendulum

2 Theoretical Framework

2.1 General Framework

The scheme of an SOAC based on an mnSOM is presented in Fig. 1. Basically, an SOAC has an
arrayed structure in which each nodal unit of a conventional SOM is replaced by a functional module,
such as a multilayer perceptron (MLP). As shown in the figure, each module consists of controller
and predictor blocks. The controller block has 2 input vectors ���� and �����, which are the current
and the desired states of the target object, respectively. The corresponding output is the control signal,
denoted by ����� for the �th controller1. Thus,

����� � ��������� ������� (1)

Here, ������ represents the function describing the �th controller. On the other hand, each predictor
has 2 input vectors ���� and ����, i.e., the current state and the current (real) control signal of the
target object. The corresponding output is the prediction of the object state at �� sec later;

��������� � �������������� (2)

Here, ������ represents the function describing the �th predictor. The outputs of the predictors are
delayed for ��.

Before explaining the learning algorithm, we consider the execution phase. Suppose that an un-
known target object is given after finishing the training phase. First, the prediction error is calculated
as follows. (It is assumed that the initial control signal ���� is set to 0 or a small random value).

������ � ��� ����������� � �
�������� ������

���� (3)

Then the least prediction error module is determined as the BMC at the time �. Here, let � denote the
index of the BMC given by

���� � 	
� �
�
�

������� (4)

If � � � then the BMC is determined by the prediction error only at time �, whereas if � 	 � 	 � then
the BMC is determined by the time averaged prediction error. The BMC control signal is selected as
the actual control signal.

���� � ����� � ��������� ������ (5)

Therefore, the controller coupled with the best predictor is always selected as the best controller.

2.2 Learning Algorithm of SOAC

Now suppose that there is a family of target objects that are described by the same equations, but are
defined by different parameter sets. Further, suppose that the parameters continuously vary the dy-
namics of the object.
 out of them are assumed to be known in advance, and can be used for training.
Therefore,
 desired controllers are also assumed to be prepared in advance, and are specialized to
those objects. By using these controllers,
 training sequences ��������������� (� � �� � � � �
) are
obtained for the objects.

1In this paper, superscripts and subscripts represent the indexes of modules and the training sequences, respectively.

WSOM 2005, Paris

The learning algorithm of an SOAC is identical to the algorithm of an mnSOM [3]. Thus, the
training of an SOAC is performed iteratively, with each learning step consists of four processes,
evaluative process, competitive process, cooperative process and adaptive process; the same as in the
mnSOM. Here, the controller and the predictor blocks are assumed to be MLPs, the weight vectors
of which are ��� and ���.
Evaluative Process First, the prediction error of each module is evaluated for all training se-
quences, defined as follows.

���
� �

�

� �

�

��������� ���
� ���

���� �� (6)

Here, ���
� ��� and ���

� are the output and the averaged prediction error of the �th predictor for the �th
training sequence.
 is the length of the sequence; thus the time average is taken from the whole
sequence.
Competitive Process After the prediction errors are evaluated, the BMC is determined for each
sequence. Here, the module that minimizes the prediction error is determined as the BMC of the
sequence. Thus, the index of the BMC for the �th sequence is given by,

�� � 	
� �
�
�

���
� � (7)

Cooperative Process The learning rates ���� � are calculated by using the neighborhood function.

��
� �

���
�
�
���� � ���

��� ����
��

���� ���
�
�
���� � ��

��

��� ���� (8)

Here �� and ��� represent the coordinates in the map space of the �th module and the BMC.
Adaptive Process The weight vectors of the predictors and the controllers are all innovated with
the learning rates ���

� �, as follows.

���� � ��
��

���

��
�

����
�

����
(9)

���� � ��

��
���

��
�

����
�

����
(10)

Here, ���
� is the error between the �th controller and the controller specialized to the �th object. Thus,

���
� �

�

� �

�

��������� ��
� ���

���� ��� (11)

These four processes are iterated until the network achieves a steady state. As a result, controllers
having similar properties are expected to be located to near points in the map space.

2.3 Feedback Error Learning for Neural Controllers

Though the above algorithm is a natural extension of an mnSOM, further extensions are also pos-
sible by replacing with other types of neural controllers. For example, the feedback-error-learning

Self-Organizing Adaptive Controllers:Application to the Inverted Pendulum

NNC

Predictor

CFC

x(t)^

x(t)

u(t)

controller block

predictor block

u (t)k

x (t)~D k

current state

current control signal

desired state

+
+

predicted state

+
-

time delay

control signal

Figure 2: Block diagram of the functional module of an SOAC with feedback-error-learning

algorithm proposed by Kawato et al. can be adopted into our model [6]. The advantages of employ-
ing feedback-error-learning are that (i) the controllers can be trained using conventional feedback
controllers, and there is no necessity to determine the desired controllers in advance, and (ii) the
feedback-error-learning allows incremental learning for the SOAC.

The block diagram of the module is presented in Fig. 2; this is the neural controller for a closed-
loop system proposed by Gomi and Kawato [7]. In this model, the controller block consists of a linear
conventional feedback controller (CFC) and a nonlinear neural network controller (NNC). Herecfc� �

is the feedback matrix of the CFC, whereas nnc���� means the function describing the NNC of the �th
controller. The feedback matrix of the given
 targets are calculated in advance, denoted ascfc��.
Then the algorithm for the SOAC is rewritten as follows.

nnc����� � nnc��������� ����� (12)
cfc����� � cfc� � ������� ����� (13)

����� � nnc����� � cfc����� (14)

These then are the definitions of the control signals, whereas the control error is redefined as follows.

nnc�� �
�

� �

�

���cfc�����
���� �� (15)

At last, the feedback matrix cfc� � and the weight vector nnc�� are innovated in the adaptive process
as follows.

cfc� � ��

��
���

��
�

cfc�� (16)

�nnc�� � ��
�nnc��

�nnc��
(17)

Therefore, all controllers are accompanied with corresponding CFCs, which provide the correspond-
ing error signals to the NNCs.

WSOM 2005, Paris

Table 1: Parameters of the inverted pendulum

2l
m

ux
C

f
M

���� [m] (Short)
� length to the pendulum center of the mass 0.50 [m] (Half)

���� [m] (Long)
���� [kg] (Light)

� mass of the pendulum ���� [kg] (Middle)
���� [kg] (Heavy)

� mass of cart ��� [kg]
� friction coefficient of the pendulum ��� � ���� [kgm�/s]
� friction coefficient of the cart ���� [kg/s]
� gravity acceleration ��� [m/s�]

Half
Heavy

Half
Light

Half
Middle

Short
Heavy

Short
Middle

Short
Light

Long
Heavy

Long
Middle

Long
Light

Figure 3: Map of the inverted pendulum control modules. Gray level represents the distance of predictors
between neighbors

3 SOAC Applied to an Inverted Pendulum

To validate the ability of an SOAC, a simulation with an inverted pendulum was performed. The
architecture presented in Fig. 2 was employed for the task. However, it was unrealistic situation, as
the length and the mass of the pendulum were assumed to be variable. For the training, 9 parameter
sets were chosen, i.e., combinations of 3 kinds of length of pendulum; ‘Short’, ‘Half’ and ‘Long’, and
3 kinds of mass of the pendulum; ‘Light’, ‘Middle’ and ‘Heavy’ as listed in Table 1. The feedback
matrix �cfc��� was determined by the state feedback control law. NNCs were the 3 layer MLPs,
whereas the predictors were described by linear operators. In addition, external disturbance was
added to the cart.

After finishing the training phase, the network was fixed and the adaptation ability was then ex-
amined. Fig. 3 shows the map generated by the SOAC after training; this was divided to 3 areas that
approximately corresponded to the 3 clusters of ‘Short’, ‘Middle‘ and ‘Long’. To examine the adapt-
ability, the length and mass of the pendulum was suddenly changed every 30 sec during the control
task. Those values were ones not used in the training phase except for the first 30 sec. Simulations

Self-Organizing Adaptive Controllers:Application to the Inverted Pendulum

-1
-0.5

 0
 0.5

 1

 0 10 20 30 40 50 60 70 80 90

 (m
)

time (sec)

output
target

-0.1

 0

 0.1

 0 10 20 30 40 50 60 70 80 90

 (r
ad

)

time (sec)

output
target

x

x

l=0.5, m=0.35 l=0.3, m=0.5 l=0.7, m=0.25
Unknown ConditionsGiven Condition

-1
-0.5

 0
 0.5

 1

 0 10 20 30 40 50 60 70 80 90

 (m
)

time (sec)

output
target

-0.1

 0

 0.1

 0 10 20 30 40 50 60 70 80 90

 (r
ad

)

time (sec)

output
target

x

x

-1
-0.5

 0
 0.5

 1

 0 10 20 30 40 50 60 70 80 90

 (m
)

time (sec)

output
target

-0.1

 0

 0.1

 0 10 20 30 40 50 60 70 80 90

 (r
ad

)

time (sec)

output
target

-1
-0.5

 0
 0.5

 1

 0 10 20 30 40 50 60 70 80 90

 (m
)

time (sec)

output
target

-0.1

 0

 0.1

 0 10 20 30 40 50 60 70 80 90

 (r
ad

)

time (sec)

output
target

 CFC

non-adaptive

 NNC

non-adaptive

 CFC

adaptive

 NNC

adaptive

Figure 4: Simulation results of the inverted pendulum. The length and mass of the pendulum were changed
every 30 sec. The parameter set of the pendulum in the first period was the same as the one used in the training
phase, whereas those for the second and the third periods were unknown conditions for the SOAC. Experiments
were performed with and without switching the modules, i.e., adaptive and non-adaptive conditions. In addi-
tion, either CFC or NNC was used for the task. ���� and ���� denote the position of the cart and the angle of
the pendulum, respectively. The ‘X’s represent the time when the pendulum fell down

WSOM 2005, Paris

were performed with or without switching the modules, correspondingd to adaptive or non-adaptive
controls, respectively. In addition, either CFC or NNC were used for the control task.

The results are shown in Fig. 4. When the pendulum was controlled by a module without switch-
ing, the pendulum fell down in both CFC and NNC cases. On the other hand, the pendulum remained
up and successfully moved to the desire position when the modules were adaptively switched. Fur-
thermore, NNCs showed better control results than CFCs. These results suggest the effectiveness of
an SOAC for adaptive control tasks.

4 Conclusion

In this paper, we proposed a novel framework for an mnSOM-based adaptive controller called an
SOAC; and the simulation results for an inverted pendulum suggested a high adaptation ability. An
SOAC not only works as an adaptive controller, it also generates a feature map of the controlled
objects. If the dynamics of the target object are continuously varied by the hidden parameters, then the
generated feature map is expected to be a topological map of the hidden parameter space. Therefore,
it is important how the feature map is utilized in the control task. Furthermore, incremental learning
allows the controllers to be refined in parallel with controlling the unknown objects. These are areas
we are currently working on.

Acknowledgements

This work was supported by a COE program (Center #J19) grant to the Kyushu Institute of Technol-
ogy by the Japanese MEXT.

References

[1] Tokunaga, K., Furukawa, T., Yasui, S.: Modular network SOM: Extension of SOM to the realm
of function space. Proc. of WSOM2003, 173–178, 2003

[2] Furukawa, T., Tokunaga, K., Kaneko, S., Kimotsuki, K., Yasui, S.: Generalized self-organizing
maps (mnSOM) for dealing with dynamical systems. Proc. of NOLTA2004, 231–234, 2004

[3] Furukawa, T., Tokunaga, K., Morishita, K., Yasui, S.: Modular network SOM (mnSOM): From
vector space to function space. Proc. of IJCNN2005, 2005 (accepted)

[4] Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neu-
ral Networks 11, 1317–1329, 1998

[5] Martinetz, T.M., Ritter, H.J., Schulten, K.J.:Three-dimensional neural net for learning visuomotor
coordination of a robot arm. IEEE Transactions on Neural Networks 1 (1), 131–136, 1990

[6] Kawato, M., Furukawa, K., Suruzuki, R.: A hierachical neural network model for control and
learning of voluntary movement. Biological Cyternetics 57, 169-185, 1987

[7] Gomi, H., Kawato, M.: Neural network control for a closed-loop system using feedback-error-
learning. Neural Networks 6, 933–946, 1993

