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Abstract – Novel tools are needed for comprehensive comparisons of interspecies characteristics 
of massive amounts of genomic sequences currently available. An unsupervised neural network 
algorithm, Kohonen's Self-Organizing Map (SOM), is an effective tool for clustering and 
visualizing high-dimensional complex data on a single map. We modified the conventional SOM 
for genome informatics on the basis of batch-learning SOM, making the learning process and 
resulting map independent of the order of data input. We generated the SOMs for 
tetranucleotide frequencies in 10- and 100-kb sequence fragments from 38 eukaryotes for which 
almost complete genomic sequences are available. A massive amount of data points (e.g. 
approximately 600,000 data points for 10-kb sequences) in the 256-dimensional space for the 
tetranucleotide frequencies was analyzed using the Earth Simulator, which is one of the highest 
performance supercomputers in the world. SOM recognized species-specific characteristics (key 
combinations of oligonucleotide frequencies) in the genomic sequences, permitting species-
specific classification of the sequences without any information regarding the species. Because 
the classification power is very high, SOM is an efficient and powerful tool for extracting a wide 
range of genome information. 
  
Key words – Self-organizing Map (SOM), batch learning SOM, oligonucleotide frequency, 
the Earth Simulator, genome informatics, tetranucleotide frequency 
 
1   Introduction 
 
Genome sequences, even protein-noncoding sequences, contain a wealth of information. The 
G+C content (G+C%) is a fundamental characteristic of individual genomes and used for a 
long period as a basic phylogenetic parameter to characterize individual genomes. The G+C%, 
however, is too simple a parameter to differentiate wide varieties of genomes. Many groups 
have reported that oligonucleotide frequency, which is an example of high-dimensional data, 
varies significantly among genomes and can be used to study genome diversity [1-4]. An 
unsupervised neural network algorithm, Kohonen's Self-organizing Map (SOM), is a powerful 
tool for clustering and visualizing high-dimensional complex data on a two-dimensional map 
[5-7]. On the basis of batch learning SOM, we have developed a modification of the 
conventional SOM for genome sequence analyses, which makes the learning process and 
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resulting map independent of the order of data input [8-13]. We previously constructed the 
SOMs for di-, tri-, and tetranucleotide frequencies in 10-kb genomic sequences from 65 
bacteria and 6 eukaryotes. In the resulting SOMs, the sequences were clustered according to 
species without any information regarding the species, and increasing the length of the 
oligonucleotides from di- to tetranucleotides increased the clustering power [11]. In the present 
study, for investigating the power to detect differences among closely related eukaryotes, 
tetranucleotide frequencies in 10- and 100-kb sequence fragments derive from 38 eukaryotic 
genomes, which have been sequenced extensively, were analyzed. To characterize and 
visualize a massive amount of eukaryotic genome sequences on a single map, the Earth 
Simulator, which is one of the highest performance supercomputers in the world, was used. 
 
2 Methods 
SOM implements nonlinear projection of multi-dimensional data onto a two-dimensional array of 
weight vectors, and this effectively preserves the topology of the high-dimensional data space (5-7). 
We modified the conventional SOM for genome informatics on the basis of batch learning SOM 
(BL-SOM) to make the learning process and resulting map independent of the order of data input 
[8-12]. The initial weight vectors were set based on the widest scale of the sequence distribution in 
the oligonucleotide frequency space with PCA. Weights in the first dimension (I) were arranged 
into lattices corresponding to a width of five times the standard deviation (5σ1) of the first principal 
component: the second dimension (J) was defined by the nearest integer greater than σ2/σ1 x I; and 
I was set in the present study as the average number of sequence data per neuron becomes four. σ1 

and σ2 were the standard deviations of the first and second principal components, respectively. The 
weight vector on the ijth lattice (wij) was represented as follows: 
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where xav is the average vector for oligonucleotide frequencies of all input vectors, and b1 and b2 
are eigenvectors for the first and second principal components. In Step 2, the Euclidean distances 
between the input vector xk and all weight vectors wij were calculated; then xk was associated with 
the weight vector (called wi’ j’) with minimal distance. After associating all input vectors with 
weight vectors, updating was done according to Step 3.      
  In Step 3, the ijth weight vector was updated by  
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where components of set Sij are input vectors associated with wi' j' satisfying 
and . The two parameters α(r) and β(r) are learning 

coefficients for the rth cycle, and N
)r(ii)r(i ' β+≤≤β− )r(jj)r(j ' β+≤≤β−

ij is the number of components of Sij. α(r) and β(r) are set by  
 α(r) = max {0.01, α(1)(1 – r/T)}       (3) 
 β(r) = max {1, β(1) - r}                      (4) 
where, α(1) and β(1) are the initial values for the T-cycle of the learning process. In the present 
study, we selected 60~100 for T, 0.6 for α(1), and 40 ~ 80 for β(1) depending on the map size 
(approximately a fourth of I). The learning process is monitored by the total distance between xk 
and the nearest weight vector wi'j', represented as  
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where N is the total number of sequences analyzed. This batch learning SOM (BL-SOM) is 
suitable for actualizing high-performance parallel-computing and thus for a large scale 
computation using the Earth Simulator of Japan Agency for Marine-Earth Science and 
Technology.  

 
3 Results  
3.1   SOMs for 38 eukaryote genomes 
To investigate clustering power of SOM for a wide range of eukaryote sequences, we analyzed 
tetranucleotide frequencies in 590,000 and 59,000 10- and 100-kb sequence fragments derived 
from 38 eukaryote genomes listed in the Fig. 1 legend  (a total of 5.9 Gb), which represented a 
wide rage of eukaryotic phylotypes. To prevent excess contribution of a large size of the 
human genome, sequences from a half of human chromosomes were used. The SOM adapted 
for genome informatics was constructed as described previously [11]. First, oligonucleotide 
frequencies in the sequence fragments were analyzed by PCA, and the first and second 
principal components were used to set the initial weight vectors that were arranged as a two-
dimensional array. SOMs obtained after 100 and 60 learning cycles for the 10- and 100-kb 
sequences, respectively, revealed clear species-specific separations of the sequence fragments 
(Fig. 1). Lattice points that contain sequences from a single species are indicated in color, and 
those that include sequences from more than one species are indicated in black. Most of the 
100-kb sequences were classified primarily into species-specific territories. Comparison of 
classification on the 100-kb tetranucleotide SOM (100-kb Tetra-SOM) with that by the initial 
vectors set by the first and second principal components (100-kb Tetra-PCA), revealed that 
sequences from each species were clustered far more tightly on the SOM.  

In DNA databases, only one strand of a pair of complementary double-helix sequences is 
registered, and choice between the two complementary sequences of genomic fragments is 
often arbitrary in the database registration. When global characteristics of oligonucleotide 
frequencies in the genome are considered, distinction of frequencies between the 
complementary oligonucleotides (e.g. AAAC versus GTTT) is not important in most cases. To 
reduce computation time, SOM was constructed in separate with frequencies for degenerate 
sets in which the frequencies of a pair of complimentary tetranucleotides were added 
(DegeTetra-SOM in Fig. 1). This roughly halved the computation time and the level of the 
species-specific classification is almost equivalent. On the 100-kb Tetra- and DegeTetra-SOMs, 
99.8 and 99.9% of the sequences were classified into the proper species territories, respectively. 
The species separation pattern was simpler on the DegeTetra-SOM than on the Tetra-SOM.  

The classification power according to species was shown to be significantly lower for 10-kb 
sequences (10-kb DegeTetra-SOM in Fig. 1) than for 100-kb SOM; and a large portion of the 
sequences derived from the two closely related fishes, Fugu and Tetraodon, each of which 
composed its own distinct territory on the 100-kb SOM, could not be separated from each other.  
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Fig. 1. SOMs for 10- and 100-kb sequences of 38 eukaryotic genomes. (A) 100-kb Tetra-SOM and Tetra-PCA. Tetra-PCA represents 
the sequence classification by the initial weight vectors set by PCA. (B) 100- and 10-kb DegeTetra-SOMs. Lattice points that include 
sequences from more than one species are indicated in black, those that contain no genomic sequences are indicated in white, and those 
containing sequences from a single species are indicated in color as follows: Homo sapiens (■), Gallus gallus (■),  Fugu rubripes (■), 
Tetraodon nigroviridis (■), zebrafish Danio rerio (■), Arabidopsis thaliana (■), rice Oryza sativa (■), Ciona savignyi (■), Ciona 
intestinalis (■), Apis mellifera (■), Bombyx mori (■), Drosophila pseudoobscura (■), Drosophila melanogaster (■), Caenorhabditis 
elegans (■), Caenorhabditis briggsae (■), Plasmodium falciparum (■), Plasmodium yoelii (■), Giardia lamblia (■), Kluyveromyces 
waltii (■), Magnaporthe grisea (■), Neurospora crassa (■), Anopheles gambiae (■), Aspergillus terreus (■), Aspergillus nidulans (■), 
Candida albicans (■), Coprinopsis cinerea (■), Cryptococcus neoformans (■), Cryptosporidium parvum (■), Gibberella zeae (■), 
Saccharomyces sp. (■), and Schizosaccharomyces pombe (■). For human, sequences from chromosomes 2, 6, 7, 13, 14, 20, 21, 22, X, 
and Y were analyzed. Color version of this figure can be obtained from our URL 
 (http://lavender.genes.nig.ac.jp/takaabe/wsom2005/euka/Fig1.html). 

 
3.2   Biological significance of SOM separation  
The G+C% is known to be a fundamental characteristic not of individual genomes but also of 
genomic portions in a single genome. For example, each genome of warm-blooded vertebrates 
such as human and chicken is composed of long-range segmental G+C% distributions; AT- and 
GC-rich isochors [14-17]. G+C% obtained from the weight vector for each lattice point in the 
100-kb Tetra-SOM (G+C% in Fig. 2A) was reflected in the horizontal axis and increased from 
left to right. In other words, sequences with high G+C% (red in the G+C% panel) were located 
on the right side of the map, and similar results were obtained for the DegeTetra-SOMs (data 
not shown). Territories of the two warm-blooded vertebrates, human and chicken, extended 
significantly in the horizontal direction, showing sequences of distinct G+C% levels (i.e., AT-
rich and GC-rich sequences) present within each genome. Furthermore, the territory of each 
species was split into a few sub-territories, which most likely reflect the AT- and GC-rich 
isochores. SOM could differentiate genomic portions with distinct characteristics within one 
genome. Therefore, the analysis on intraspecies separations may provide profound information 
regarding the structural details of individual genomes. 
3.3   Diagnostic oligonucleotides for species separations 
Underlying representation in SOMs enables us to retrieve characteristic oligonucleotide 
frequencies for individual genomes and genomic portions. The frequency of each 
tetranucleotide obtained from the weight vector for each lattice point in the 100-kb SOMs was 
calculated and normalized with the level expected from the mononucleotide composition at 
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each lattice point, and the observed/expected ratios are illustrated in red (overrepresented), 
blue (underrepresented), or white (moderately represented) in Fig. 2. This normalization 
allowed oligonucleotide frequencies in each lattice point to be studied independently of 
mononucleotide compositions. Transitions between red (overrepresentation) and blue 
(underrepresentation) for various tetranucleotides often coincided exactly with species borders, 
showing that SOM recognized the species-specific combination of oligonucleotide frequencies 
that is the representative signature of each genome and enabled us to identify the frequency 
patterns that are characteristic of individual genomes. Twenty diagnostic cases for the species-
specific territory formation are listed in Fig. 2. SOM utilizes complex combinations of many 
tetranucleotides for the species separations, importantly, in area-dependent manners. This is 
due to the principle that SOM implements the nonlinear projection from the multidimensional 
space of input data onto a two dimensional array of weight vectors.  

CAGT

GGTA

G+C %

GAGACGCG

ACCC

GGAA

Tetra - SOM

TCGA TCTC TTAA TTTA

DegeTetra - SOM AACT / AGTT AAGG / CCTT AGGC / GCCT

CGCC / GGCGCGCA / TGCG CTCA / TGAG CTCC / GGAG

GCGC GATC TACC / GGTA TTAG / CTAA

0.3 0.9 1.10.5 1.5 2.0

Fig. 2. Levels of each tetranucleotide and of each pair of complimentary tetranucleotides in 100-kb SOMs. G+C% for each lattice point 
in the 100-kb SOMs was calculated and divided into five categories with an equal number of lattices [11]. The lattice points belonging to 
the categories of the highest, second-highest, middle, second-lowest, and lowest G+C% are shown in dark red, light red, white, light blue, 
and dark blue, respectively. Examples of tetranucleotide component planes diagnostic for species separations are presented. Levels of 
individual tetranucleotides and of complimentary tetranucleotide pairs for each lattice point in the 100-kb Tetra- and DegeTetra-SOMs, 
respectively, were calculated and normalized with the level expected from the mononucleotide composition of the lattice point. The 
observed/expected ratio is indicated in colors at the bottom of the figure. Color version of this figure can be obtained from our URL 
(http://lavender.genes.nig.ac.jp/takaabe/wsom2005/euka/Fig2.html). 
 
3.4   SOMs with human, mouse, and rat sequences 
The present study is an example of comparative genomics, and the resulting SOM is clearly 
affected by the genomes included in the analysis. In Fig.1, we analyzed 38 eukaryotic genomes, 
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A Tri-SOM, 10-kb window

Tetra-SOM, 10-kb window

Tri-SOM, 100-kb window

Tetra-SOM, 100-kb window

B AATT ACAA ACAC

ACTT AGTC CATC

GACA GCAC TACAGTGA

ATGT

Tetra-SOM, 100-kb window

0.0 0.9 1.10.5 1.5 2.0  
Fig. 3 SOMs for human, mouse and rat draft sequences. (A) Tri- and Tetra-SOMs were constructed with nonoverlapping 10-kb and 
overlapping 100-kb sequences with a 10-kb sliding step. Lattice points that contain sequences from one or two species are indicated in 
color (human, red; mouse, dark blue; rat, green; mouse + rat, light blue; human + mouse, yellow; human + rat, violet), those from three 
species are indicated in black, and those that contained no sequences are indicated in white. (B) Levels of individual tetranucleotides in 
the weight vector of each lattice point in the 100-kb Tetra-SOM was calculated after normalization of the mononucleotide composition 
of the lattice weight vector and presented as described in Fig. 2. Component planes diagnostic for species separations are shown. Color 
version of this figure can be obtained from our URL (http://lavender.genes.nig.ac.jp/takaabe/wsom2005/euka/Fig3.html). 
 
which covered a wide range of phylogenetically distinct eukaryotes. To furtherer test the clustering 
power of SOM for closely related eukaryotes, SOMs were constructed with nonoverlapping 10-kb 
and overlapping 100-kb sequences with a step size of 10 kb derived from human, mouse and rat 
genomes. Lattice points that included sequences from one or two species are indicated in color and 
those that included sequences from all three species are indicated in black (Fig. 3A). Significant 
separation between human (red) and rodent (mouse and rat; light blue) sequences was observed 
even in the 10-kb SOMs. In the 10-kb Tetra-SOM, 41% of the human sequences were classified 
into human-specific territories, and 5% and 4% of mouse and rat sequences, respectively, were 
classified into mouse and rat territories. In the 100-kb SOMs, separation between human and 
rodents was very clear, and 99% of human sequences were classified into the human territory. 
Furthermore, partial separations between mouse and rat were observed; 50% and 21% of mouse 
and rat sequences, respectively, were classified into mouse (dark blue) and rat (green) territories. 
Thus, SOMs can recognize unique sequence characteristics even in closely related species. 
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Diagnostic tetranucleotides for species separations in the 100-kb Tetra-SOM are listed in Fig. 3B. 
In the mouse and rat territories, ACAC and AATT were over- and underrepresented, respectively, 
in comparison to levels in human. ACAA and GACA were overrepresented in mouse, and GTGA 
was overrepresented in human.  
 
4 Discussion 
The present SOM is an unsupervised algorithm and thus differs from the supervised algorithm, 
Learning Vector Quantization (LVQ), proposed by Kohonen et al. [18]. The main conclusion of 
the present study is that, even using the unsupervised algorithm (i.e., without information regarding 
species), genomic sequences were self-organized according to species on the basis of 
oligonucleotide frequencies. Because the classification power is very high, the SOM can provide a 
powerful bioinformatic tool for classifying and extracting a wide range of genomic information 
even for the categories undiscovered in advance, especially when sequence fragments obtained 
from a single genome were analyzed; for example, classification according to functional categories 
unassigned in advance (our unpublished results). However, when we consider the classification of 
sequences only according to known categories (e.g., according to species), LVQ might have better 
resolution. If so, LVQ should provide a powerful bioinformatic tool such as the phylogenetic 
assignment of species-unknown sequences obtained from mixed genomes in a novel environmental 
sample [13], which was also analyzed in another paper of this meeting [19]. This is because a map 
is constructed in advance with all available sequences from known species being compiled in DNA 
databases and on this map the species-unknown sequences from an environmental sample are 
mapped [19]. High accuracy of species classification for the species-known sequences is 
prerequisite to the accurate phylogenetic prediction for the species-unknown sequences. Recently 
we have also analyzed difference of results obtained with plane and spherical SOMs.  

When characteristic oligonucleotides, both underrepresented and overrepresented in each 
genome, are considered, various factors, including DNA conformational tendencies and context-
dependent mutation and modification of DNA, are thought to be responsible [1-4, 11]. All CpG-
containing tetranucleotides (CGCG, TCGA, CGCA, TGCG, CGCC, GGCG, and GCGC in Fig. 2) 
showed clear underrepresentation characteristically in all vertebrate territories. This properly 
reflected their genome characteristics, which is related with DNA methylation. With respect to 
overrepresented sequences, preferences for sequences recognized by ubiquitous DNA-binding 
proteins and abundant repetitive elements must be considered. Because inter- and intraspecies 
separations are very clear, SOMs should provide fundamental guidelines for understanding the 
detailed molecular mechanisms that have established genome-specific sequence characteristics 
during evolution. A wide variety of oligonucleotide sequences function as genetic signals (e.g., 
regulatory signals for gene expression). We found that occurrence levels of oligonucleotide 
sequences corresponding to important functional signals were often biased significantly from the 
random occurrence level, which is expected from the base composition of the genome, and were 
diagnostic for the species separations (our unpublished results).  When known signal sequences of 
various species with enough experimental data are characterized systematically with SOMs in 
advance, we can develop an in silico method of signal prediction, which is most useful for genomes 
that are sequenced but for which there is little additional experimental data. Because the number of 
such genomes has increased rapidly, development of such an in silico method has become 
increasingly important. Functional signals, such as transcription-regulatory signals, are typically 
longer than tetranucleotides, and therefore, analyses of longer oligonucleotides become important. 
To conduct SOM with longer oligonucleotides such hexa- and heptanucleotides (4,096- and 
16,384-dimensional data) for a massive amount of genome sequences currently available, a large-
scale computation using a high-performance supercomputer such as the Earth Simulator becomes 
essential. 
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