Strong Approximations under Dependence

by
Wei Biao Wu
The University of Chicago
5734 S. University Avenue
Chicago, IL 60637

(\(X_i\))_{i \in \mathbb{Z}}$: a centered \(d\)-dimensional random processes

The partial sum \(S_i = \sum_{j=1}^{i} X_i\)

Approximate \(S_i\) by Gaussian processes

On a richer probability space, there exists a Gaussian process \(G_i\) and a process \(\tilde{S}_i\) such that

- \((\tilde{S}_i)_{i \in \mathbb{N}}\) and \((S_i)_{i \in \mathbb{N}}\) are identically distributed;
- The super distance between \(\tilde{S}_i\) and \(G_i\):

\[
\max_{1 \leq i \leq n} |\tilde{S}_i - G_i| = O(r_n). \tag{1}
\]

Here \(r_n\) is the rate of approximation and \(O(r_n)\) in (1) can be \(O_P(r_n)\) or the almost sure rate \(O_{a.s.}(r_n)\).
Gaussian Approximations

- \((X_i)_{i \in Z}\): a centered \(d\)-dimensional random processes
- The partial sum \(S_i = \sum_{j=1}^{i} X_i\)
- Approximate \(S_i\) by Gaussian processes
- On a richer probability space, there exists a Gaussian process \(G_i\) and a process \(\tilde{S}_i\) such that
 - \((\tilde{S}_i)_{i \in N}\) and \((S_i)_{i \in N}\) are identically distributed;
 - The super distance between \(\tilde{S}_i\) and \(G_i\):
 \[
 \max_{1 \leq i \leq n} |\tilde{S}_i - G_i| = O(r_n) \tag{1}
 \]

Here \(r_n\) is the rate of approximation and \(O(r_n)\) in (1) can be \(O_P(r_n)\) or the almost sure rate \(O_{\text{a.s.}}(r_n)\).
With the approximation (1), if r_n is sufficiently small, then statistics involve the partial sum process $(S_i)_{i=1}^n$ can be approximated by functionals of the Gaussian process $(\tilde{G}_i)_{i=1}^n$.

Gaussian processes have many nice and tractable properties.

A substantial generalization of the central limit theorem
A partial list of contributors:

- DOOB, J. L.
- STRASSEN, V.: i.i.d. random variables and martingale differences
- CSORGO, M. and REVESZ, P.
- KOMLÓS, J., MAJOR, P., AND TUSNÁDY, G: i.i.d. random variables, partial sum process and empirical processes
- BERKES, I., DEHLING, H., PHILIPP, W., STOUT, W.: strong mixing processes, vector-valued random variables
- BRADLEY, R. C.
- EBERLEIN, E.
- SHAO, Q., Einmahl, U.
Gaussian Approximations

A partial list of contributors:

- Sakhanenko, A.
- RIO, E.
- LIN and LU
- DEDECKER, J. and PRIEUR, C.
- VOLNÝ, D.: ergodic processes, martingales
Gaussian Approximations under Independence

Theorem (Komlós, Major and Tusnády, KMT, 1975, 1976).

Assuming that

- e_i are iid with mean 0 and $\sigma^2 = E(e_i^2)$
- $E(|e_i|^p) < \infty$ for some $p > 2$

Then on a richer probability space, there exists a Brownian motion B such that

$$\max_{i \leq n} |S_i - \sigma B(i)| = o_{a.s.}(n^{1/p}).$$

(2)

The bound $o_{a.s.}(n^{1/p})$ is optimal.

Improvements and Generalizations: Shao, Sakhanenko, among others.
Theorem (Komlós, Major and Tusnády, KMT, 1975, 1976). Assuming that

- e_i are iid with mean 0 and $\sigma^2 = E(e_i^2)$
- $E(|e_i|^p) < \infty$ for some $p > 2$
- $S_n = e_1 + \ldots + e_n$

Then on a richer probability space, there exists a Brownian motion B such that

$$\max_{i \leq n} |S_i - \sigma B(i)| = o_{a.s.}(n^{1/p}). \quad (2)$$

The bound $o_{a.s.}(n^{1/p})$ is optimal.

Improvements and Generalizations: Shao, Sakhanenko, among others.
Many of previous results on strong approximations require strong mixing types of conditions, and establish results of the following type:

\[\max_{i \leq n} |S_i - \sigma B(i)| = o_{a.s.}(n^{1/2-\epsilon}), \]

where \(\epsilon \) is a small positive number.

- Not (nearly) optimal
- Of limited use in certain statistical inference.
- Wu and Zhao (2007) considered statistical inference of trends in time series and constructed simultaneous confidence bands for mean trends with asymptotically correct nominal coverage probabilities. It requires error bound of type \(o_{a.s.}(n^{1/p}) \).
Gaussian Approximations under Dependence

Many of previous results on strong approximations require strong mixing types of conditions, and establish results of the following type:

$$\max_{i \leq n} |S_i - \sigma B(i)| = o_{a.s.}(n^{1/2 - \epsilon}), \quad (3)$$

where ϵ is a small positive number.

- Not (nearly) optimal
- Of limited use in certain statistical inference.
- Wu and Zhao (2007) considered statistical inference of trends in time series and constructed simultaneous confidence bands for mean trends with asymptotically correct nominal coverage probabilities. It requires error bound of type $o_{a.s.}(n^{1/p})$.
Can we establish a strong invariance principle which can have optimal or nearly optimal bounds, as the one in Komlós, Major and Tusnády (1975,76)?

Yes, we can. However, ...
Can we establish a strong invariance principle which can have optimal or nearly optimal bounds, as the one in Komlós, Major and Tusnády (1975,76)? Yes, we can. However, ...
In the recent ten plus years, there have been a substantial account on dependence measures: Dedecker, Doukhan, Louhichi, Merlevéde, Prieur, etc. See

- Dedecker, Jérôme and Doukhan, Paul and Lang, Gabriel and León R., José Rafael and Louhichi, Sana and Prieur, Clémentine, *Weak dependence: with examples and applications*, Lecture Notes in Statistics, 190, Springer, New York,

Dependence Measures

Stationary and causal processes; let

\[X_n = g(\ldots, \varepsilon_{n-1}, \varepsilon_n), \text{ where} \tag{1} \]

- **Input:** \(\varepsilon_i \) are iid innovations or shocks that drive the system (Box and Jenkins, 1970). Let \(F_n = (\ldots, \varepsilon_{n-1}, \varepsilon_n) \)
- \(g \): a filter or a transform
- \(X_n = g(F_n) \): output or response

Interpret the dependence as "How output depends on input"

- Rosenblatt (2009, 1958)
Dependence Measures

Stationary and causal processes; let

\[X_n = g(\ldots, \varepsilon_{n-1}, \varepsilon_n), \quad \text{where} \]

- **Input:** \(\varepsilon_i \) are iid innovations or shocks that drive the system (Box and Jenkins, 1970). Let \(F_n = (\ldots, \varepsilon_{n-1}, \varepsilon_n) \)
- **\(g \):** a filter or a transform
- **\(X_n = g(F_n) \):** output or response

Interpret the dependence as "How output depends on input"

- Rosenblatt (2009, 1958)
Two problems left:
- How to define dependence measures based on the above interpretation?
- How general is the representation (1)?

Physical (or functional) dependence measure

(ε_i'): iid copy of (ε_i)
- $F_n = (\ldots, \varepsilon_{n-1}, \varepsilon_n)$
- Coupling: $F_n^* = (F_{n-1}, \varepsilon_0', \varepsilon_1, \ldots, \varepsilon_n)$
- $\|X\|_p = [E(|X|^p)]^{1/p}, p \geq 1$
- $\delta_p(n) = \|g(F_n) - g(F_n^*)\|_p$

p-strong stability: $\sum_{n=0}^{\infty} \delta_p(n) < \infty$

Example: Linear processes

- \(X_t = \sum_{j=0}^{\infty} a_j \varepsilon_{t-j} \), \(a_j \) are real coefficients
- \(\varepsilon_i \) are iid innovations and \(\varepsilon_i \in \mathcal{L}^p, p > 0 \)
- \(g(\mathcal{F}_n) - g(\mathcal{F}_n^*) = a_n (\varepsilon_0 - \varepsilon'_0) \)
- \(\delta_p(n) = |a_n| c \), where \(c = \|\varepsilon_0 - \varepsilon'_0\|_p \)
- \((a_j)_{j \geq 0} \) are called impulse response function of the system (Box and Jenkins, 1970).
Example: Nonlinear Time Series

- Bilinear time series $X_n = (a + b\varepsilon_n)X_{n-1} + c\varepsilon_n$
- ARCH process $X_n = \varepsilon_n \sqrt{a^2 + b^2 X_{n-1}^2}$
- Threshold AR (TAR) process $X_n = \theta_1 X_{n-1}^+ + \theta_2 X_{n-1}^- + \varepsilon_n$
- Exponential autoregressive (EAR) process $X_n = [a + b \exp(-cX_{n-1}^2)]X_{n-1} + \varepsilon_n, \ c > 0$
- ...
Let

\[X_n = R(X_{n-1}, \varepsilon_n) \quad (2), \]

where \(R \) is bivariate measurable and \(\varepsilon_n \) iid innovations.

Theorem (Diaconis and Freedman, 1999): The recursion (2) has a unique and stationary solution if there exist \(\alpha > 0 \) and \(x_0 \) such that

- \(L_{\varepsilon_0} + |R_{\varepsilon_0}(x_0)| \in \mathcal{L}^\alpha \)
- \(E[\log(L_{\varepsilon_0})] < 0 \), where
- \(L_\varepsilon = \sup_{x \neq x'} |R_{\varepsilon_0}(x) - R_{\varepsilon_0}(x')|/|x - x'|. \)

Theorem. (Wu and Shao, 2004) The above conditions imply that there exists a \(p > 0 \) such that the physical dependence measure

\[\delta_p(n) = O(r^n) \text{ for some } r \in (0, 1). \]
Example: Nonlinear Time Series

Let

\[X_n = R(X_{n-1}, \varepsilon_n) \quad (2), \]

where \(R \) is bivariate measurable and \(\varepsilon_n \) iid innovations.

Theorem (Diaconis and Freedman, 1999): The recursion (2) has a unique and stationary solution if there exist \(\alpha > 0 \) and \(x_0 \) such that

\[L_{\varepsilon_0} + |R_{\varepsilon_0}(x_0)| \in \mathcal{L}^\alpha \]

\[E[\log(L_{\varepsilon_0})] < 0, \]

where

\[L_{\varepsilon} = \sup_{x \neq x'} |R_{\varepsilon_0}(x) - R_{\varepsilon_0}(x')|/|x - x'|. \]

Theorem. (Wu and Shao, 2004) The above conditions imply that there exists a \(p > 0 \) such that the physical dependence measure

\[\delta_p(n) = O(r^n) \text{ for some } r \in (0, 1). \]
Theorem Assume that \((X_i)\) is a causal process with mean 0 and \(E(|X_i|^p) < \infty\) for some \(p > 2\). Further assume that

\[
\sum_{i=1}^{\infty} i \delta_p(i) < \infty. \tag{4}
\]

Then there exists a standard Brownian motion \(B\) such that on a richer probability space

\[
\max_{i \leq n} |S_i - \sigma B(i)| = o_{a.s.}(n^{1/p'} \log n), \quad p' = \min(4, p), \tag{5}
\]

where \(\sigma^2 = \sum_{k \in \mathbb{Z}} E(X_0 X_k)\) is the long-run variance.

Features:
- The rate is nearly optimal when \(2 < p < 4\)
- sharp enough for nonparametric inference
- Condition (4) is mild and easily verifiable

\(^2\text{Wu (2007), Strong invariance principles for dependent random variables.}

Annals of Probability
Outline of the proof

- Martingale Approximation (Gordin, Woodroofe, Volný, Peligrad, Utev etc):
 Approximate $S_n = \sum_{i=1}^{n} X_i$ by the martingale

 $$M_n = \sum_{i=1}^{n} D_i, \text{ where } D_i = \sum_{j=i}^{\infty} P_i X_j.$$ \hspace{1cm} (6)

 Here P_i is the projection operator

 $$P_i \cdot = E[\cdot | F_i] - E[\cdot | F_{i-1}], \text{ where } F_i = (\varepsilon_i, \varepsilon_{i-1}, \ldots)$$ \hspace{1cm} (7)

- Approximation Bound (Wu, 2007)

 $$\| S_n - M_n \|_q^{q'} \leq 3 B_q^{q'} \sum_{j=1}^{n} \Theta_{j,q}, \text{ where } \Theta_{j,q} = \sum_{i=j}^{\infty} \| P_0 X_i \|_q.$$ \hspace{1cm} (8)
Outline of the proof

For $M_n = \sum_{i=1}^n D_i$, apply Strassen’s martingale embedding scheme:
On a possibly richer probability space, there exist a standard Brownian motion B and nonnegative random variables τ_1, τ_2, \ldots with partial sums

$$T_k = \sum_{i=1}^k \tau_i \quad (9)$$

such that, for $k \geq 1$,

$$M_k = B(T_k), \quad E(\tau_k | \mathcal{F}_{k-1}) = E(D_k^2 | \mathcal{F}_{k-1}) \quad (10)$$

and

$$E(\tau_k^{q/2} | \mathcal{F}_{k-1}) \leq C_q E(|D_k|^q | \mathcal{F}_{k-1}) \quad (11)$$

almost surely, where C_q is a constant.
Outline of the proof

- Let \(Q_n = \sum_{k=1}^{n} [\tau_k - E(\tau_k | \mathcal{F}_{k-1})] \).
- Write

\[
T_n - n\sigma^2 = Q_n + \sum_{k=1}^{n} \left[E(\tau_k | \mathcal{F}_{k-1}) - E(D_k^2 | \mathcal{F}_{k-1}) \right] + J_n
\]

Therefore \(T_n - n\sigma^2 = o_{a.s.}(n^2/q) \), and

\[
\max_{k \leq n} |B(T_k) - B(\sigma^2 k)| \leq \max_{k \leq n} \sup_{x: |x - \sigma^2 k| \leq n^2/q} |B(x) - B(\sigma^2 k)|
\]

\[
= o_{a.s.} \left[n^{1/q} (\log n)^{1/2} \right]
\] \hspace{1cm} (12)

Strassen type martingale embedding scheme does not have advantage if $p > 4$.

- Let \(X_i = g(\varepsilon_i, \varepsilon_{i-1}, \ldots) \) be a \(d \)-dimensional stationary causal process; \(S_n = \sum_{i=1}^{n} X_i \).
- Assume \(X_i \in \mathcal{L}^p \), \(2 < p < 4 \).
- Approximate \(S_n = \sum_{i=1}^{n} X_i \) by \(\tilde{S}_n = \sum_{i=1}^{n} \tilde{X}_i \), where

\[
\tilde{X}_i = E(X_i|\varepsilon_i, \varepsilon_{i-1}, \ldots, \varepsilon_{i-m+1})
\] (13)

are \(m \)-dependent, \(m \in \mathbb{N} \).
Liu and Lin (2009) apply the m-dependence approximation and block techniques, and prove the following result:

Theorem. If, for some $\tau > 0$, the following holds:

$$
\Theta_{n,p} := \sum_{i=n}^{\infty} \delta_{i,p} = O\left(n^{(1-p/2)/(4-p)-\tau}\right),
$$

(14)

then on a richer probability space, there exists an R^d valued Brownian motion $B(t)$ with covariance matrix Γ such that

$$
\max_{i \leq n} |S_i - B(i)| = o_{a.s.}(n^{1/p}).
$$

(15)
Berkes, Liu and Wu (2010, on progress). Consider

\[X_i = H(\varepsilon_{i-m}, \ldots, \varepsilon_i), \quad (16) \]

where \(\varepsilon_k, k \in \mathbb{Z} \), are iid and \(H \) is a measurable function with \(EX_i = 0 \).

Theorem

Assume \(EX_1 = 0 \) and \(E|X_1|^p < \infty, \ p > 2 \). Then we can construct a probability space \((\Omega_c, A_c, P_c) \) on which we can define iid random variables \(X^c_k, k \geq 1 \), and a standard Brownian motion \(B_c(\cdot) \), such that \((X^c_k)_{k \geq 1} = D (X_k)_{k \geq 1} \) and

\[S^c_n - \sigma B_c(n) = o_{as}(n^{1/p}) \text{ in } (\Omega_c, A_c, P_c), \]

where \(S^c_n = \sum_{k=1}^n X^c_k \).
Berkes, Liu and Wu (2010, on progress). Let

\[X_i = G(F_i), \text{ where } F_i = (\cdots, \varepsilon_{i-1}, \varepsilon_i), \]

(17)

To study the SIP for \(S_n = \sum_{i=1}^{n} X_i \), we shall apply the \(m \)-dependence approximation. For \(k \in \mathbb{N} \) let

\[m_k = \min\{3^b : 3^k (3^b)^{p/2-1} \geq (3^{k/2} \Theta_{3^b,p})^p, \ b \in \mathbb{N}\} . \]

(18)
Example

Assume \(\Theta_{n,p} = O(n^{-\beta}) \), \(\beta > 0 \). Elementary calculations show that \(m_k = O(3^k \gamma) \), where \(\gamma = (1/2 - 1/p) / (1/2 - 1/p + \beta) \). Let

\[
\chi_k = 3^{\iota k} k^{1/2}, \text{ where } \iota = 1/p + \gamma(1/2 - 1/p) = \frac{4\beta - 2 + p}{4\beta p + 2p - 4}.
\]

Then our Theorem asserts the SIP

\[
\max_{1 \leq j \leq n} \left| \sum_{i=1}^{j} (X_i - \sigma Z_i) \right| = o_{as}(\chi \log n).
\]

Note that \(\iota \to 1/p \) if \(\beta \to \infty \), and \(\iota \to 1/2 \) if \(\beta \to 0 \). The SIP approximation becomes better if \(\beta \) is bigger, indicating that the dependence is weaker.